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Supervisor’s Foreword

Symmetries lie at the heart of our understanding of nature, because they limit the
possible structure of physical laws or theories and thus constrain “what can be”.
Consequently, the progress in theoretical physics extending from Maxwell’s
equations to the standard model of particle physics (and beyond) is linked to a
sequence of deepened understandings and discoveries of new symmetries. When
Maxwell first wrote down his singularly prominent field equations in 1865, he did
this in a terribly complicated form spelling out every component of the fields and
currents individually. From today’s perspective, these equations follow almost
trivially in a single line argument from global Poincaré and local abelian gauge
symmetry, combined with the minimal action principle. But these constitutional
space-time and internal symmetries were hidden to Maxwell. The success story of
symmetries continues from here on. Generalizing the local abelian gauge symmetry
behind Maxwell’s theory to the non-abelian case lead Yang and Mills in the 1950s
to the discovery of gauge field theory. Back then invented as a playground for
mathematical physics, now known to describe all the forces of nature (electroweak
and strong) with the exception of gravity. Moreover, the elementary particle
properties and their possible interactions are severely limited by the representation
theory of the Poincaré group, classified by the physical concepts of spin and mass.
In addition, in a massless situation or at very high energies, the Poincaré symmetry
is amplified to the conformal symmetry group containing the scale transformations
as symmetries. Finally, the concept of local Poincaré and general diffeomorphism
invariance lead to Einstein’s theory of relativity. A fascinating extension of these
established symmetries of nature has been supersymmetry, which complements the
Poincaré symmetry generators with fermionic generators that interlink bosonic and
fermionic particles. Whether it is indeed realized in nature remains uncertain even
after 10 years of LHC measurements, but it plays a prominent role in many
approaches of unifying gravity with gauge field theory in a quantum consistent
way—as is the case in string theory.

Dualities between physical theories appear in many places. A prominent
example is the duality between electric and magnetic fields of Maxwell’s equations
in vacuum. A highly surprising and influential duality between two seemingly
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fundamentally different theories is the string/gauge theory duality connecting
quantum gravity to gauge fields, first discovered 20 years ago. In the cleanest and
most symmetric version of this ubiquitous duality the (maximally) supersymmetric
gauge field theory in four space-time dimensions is dual to a string theory in a
five-dimensional anti-de-sitter times five-sphere space-time. This correspondence
thus links two models in different space-time dimensions and explains gravity as an
emergent force. Again, an underlying fundamental symmetry structure lies at the
center of this duality: the conformal symmetry of gauge field theory is dual to the
isometry group of the anti-de-sitter space-time. What is even more fascinating about
this duality, which is to be regarded as a mathematical-physical laboratory for
understanding the nature of quantum gravity, is that this pair of dualities has a
hidden, infinite-dimensional symmetry structure that embeds the super-conformal
symmetries in a Yangian symmetry algebra. Such infinite-dimensional symmetries
were until recently only known in two-dimensional integrable quantum field the-
ories, and there seemed to be strong arguments (Coleman–Mandula and Haag–
Lopuszanski–Sohnius theorems), why in four-dimensions integrable quantum field
theories beyond free fields could not exist. The deep reason for circumventing the
no-go theorems are twofold: For one the symmetry generators act on multi-particle
states in a bi-linear fashion, mathematically expressed through an intertwined
co-product. Secondly, the 4d gauge theory has a dual two-dimensional description
via strings, which plays a prominent role in this thesis of Hagen Münkler.

This outstanding Ph.D. thesis is devoted to the structure and consequences of
hidden symmetries in string/gauge theory duality and thereby focuses on the sector
of non-local observables known as Wilson loops in gauge theory. The latter are dual
to minimal surfaces in the anti-de-Sitter superstring model. It provides a very
readable introduction to the basic ingredients of the fascinating string/gauge theory
duality which has influenced many parts of many-body problems in theoretical
physics to date. The thesis reports on the discovery of a Master symmetry for
strings in general symmetric spaces, its relation to the above-mentioned Yangian
symmetry algebra and finally, the action of the Master symmetry generators on
minimal surface solutions to the anti-de-Sitter string equation of motion. Moreover,
the thesis clarifies why in the gauge theory perspective a purely bosonic Wilson
loop does not display this hidden symmetry and how this may be cured in a
supersymmetric formulation. Lastly, the supersymmetrization of the minimal sur-
face problem for type IIB superstrings in the anti-de-Sitter background is under-
taken. This final piece is technically highly challenging and extends the classical,
bosonic result of Polyakov and Rychkov to the relevant supersymmetric case. In
summary, the thesis has extended our understanding of the string/gauge theory
duality in the sector of Wilson loops/minimal surface solution considerably. It is
written in a clear and very readable fashion, which makes it an outstanding thesis of
particular use for the next generation of researchers in this fascinating area of
mathematical physics.

Berlin, Germany
September 2018

Prof. Dr. Jan Christoph Plefka
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Abstract

This thesis discusses hidden symmetries withinN ¼ 4 supersymmetric Yang–Mills
theory or its AdS/CFT dual, string theory in AdS5 � S5. Here, we focus on the
Maldacena–Wilson loop, which is a suitable object for this study since its vacuum
expectation value is finite for smooth contours and the conjectured duality to
scattering amplitudes provides a conceptual path to transfer its symmetries to other
observables. Its strong-coupling description via minimal surfaces in AdS5 allows to
construct the symmetries from the integrability of the underlying classical string
theory. This approach has been utilized before to derive a strong-coupling Yangian
symmetry of the Maldacena–Wilson loop and describe equiareal deformations of
minimal surfaces in AdS3. These two findings are connected and extended in the
present thesis.

In order to discuss the symmetries systematically, we first discuss the symmetry
structure of the underlying string model. The discussion can be generalized to the
discussion of generic symmetric space models. For these, we find that the symmetry
which generates the equiareal deformations of minimal surfaces in AdS3 has a
central role in the symmetry structure of the model: It acts as a raising operator on
the infinite tower of conserved charges, thus generating the spectral parameter, and
can be employed to construct all symmetry variations from the global symmetry
of the model. It is thus referred to as the master symmetry of symmetric space
models. Additionally, the algebra of the symmetry variations and the conserved
charges is worked out.

For the concrete case of minimal surfaces in AdS5, we discuss the deformation
of the four-cusp solution, which provides the dual description of the four-gluon
scattering amplitude. This marks the first step toward transferring the master
symmetry to scattering amplitudes. Moreover, we compute the master and Yangian
symmetry variations of generic, smooth boundary curves. The results lead to a
coupling-dependent generalization of the master symmetry, which constitutes a
symmetry of the Maldacena–Wilson loop at any value of the coupling constant. Our
discussion clarifies why previous attempts to transfer the deformations of minimal
surfaces in AdS3 to weak coupling were unsuccessful. We discuss several attempts
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to transfer the Yangian symmetry to weak or arbitrary coupling, but ultimately
conclude that a Yangian symmetry of the Maldacena–Wilson loop seems not to be
present.

The situation changes when we consider Wilson loops in superspace, which are
the natural supersymmetric generalizations of the Maldacena–Wilson loop.
Substantial evidence for the Yangian invariance of their vacuum expectation value
has been provided at weak coupling and the description of the operator as well as its
weak-coupling Yangian invariance were subsequently established in parallel to the
work on this thesis. We discuss the strong-coupling counterpart of this finding,
where the Wilson loop in superspace is described by minimal surfaces in the
superspace of type IIB superstring theory in AdS5 � S5. The comparison of the
strong-coupling invariance derived here with the respective generators at weak
coupling shows that the generators contain a local term, which depends on the
coupling in a non-trivial way.

Additionally, we find so-called bonus symmetry generators. These are the higher
level recurrences of the superconformal hypercharge generator, which does not
provide a symmetry itself. We show that these symmetries are present in all higher
levels of the Yangian.
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Chapter 1
Introduction

Our current understanding of the microscopic world is based on Yang–Mills gauge
theories [1], which describe the fundamental interactions between elementary parti-
cles. The gauge theory descriptions of the electromagnetic, weak nuclear and strong
nuclear force are combined in the Standard Model of particle physics, which has
the gauge group SU(3) × SU(2) × U(1). The Standard Model describes all known
elementary particles and since the discovery of the Higgs boson [2–4] all particles
which it predicts have been observed.

Despite its great success in the description of scattering experiments, it does not
explain all of the observed phenomena that a theory of all fundamental interactions
should explain. Apart from the lack of a description of gravity, it does for example
neither predict the observed neutrino oscillations or the neutrino masses inferred
from them, nor does it provide appropriate candidate particles for the dark matter
needed to explain astrophysical observations.

The incompleteness of the Standard Model is however not the only challenge
theoretical physicist face in the description of gauge theories. A different challenge
lies in the mathematical problem of obtaining predictions from these models and
concerns gauge theories in general. Indeed, our understanding of gauge theories in
the full range of energy scales is disappointingly limited, since we have to refer to
perturbation theory in order to obtain results. In the case of quantumchromodynamics
(QCD), which describes the strong nuclear force, this method only provides reliable
results in the case of high-energy collisions where the running coupling constant is
small. For other phenomena — or even the time spans shortly after the scattering
events, when the scattered constituents again combine into hadrons — we must rely
on numerical results in combination with experimental data.

The most promising approach to reach an analytic understanding beyond pertur-
bation theory is the study of a particular class of gauge theories, which allow for exact
results. The prime example for such a theory is N = 4 supersymmetric Yang–Mills
(SYM) theory, an SU(N ) gauge theory which one may view as a theoretical labo-
ratory for QCD, with which it shares a similar field content. The similarity to QCD
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2 1 Introduction

can be exemplified by the possibility to compute certain tree-level QCD scattering
amplitudes within N = 4 SYM theory or by the fact that parts of the anomalous
dimensions appearing in the study of infrared singularities can be transferred also at
higher loop orders. WhileN = 4 SYM theory was already discussed in the late 70’s
[5, 6], the interest in it grew considerably after the advent of the AdS/CFT correspon-
dence [7]. The conjectured correspondence relates the four-dimensional (conformal)
gauge theory to a superstring theory with target space AdS5 × S5. It connects the
strong-coupling regime of the gauge theory to the weak-coupling regime of the string
theory and vice versa and can thus be employed to gain insights in either theory at
values of the coupling constant that are otherwise inaccessible.

The appeal of N = 4 SYM theory is further raised by the availability of two
additional methods which allow to look beyond the perturbative curtain: localization
and integrability. Either of these methods can be applied to derive exact results. The
technique of localization is based on the supersymmetry of the theory and can be
applied to reduce the path integrals appearing for certain observables to ordinary
integrals, see Ref. [8] for a recent review. In this way, one can for example derive an
exact result for the circular Wilson loop [9, 10], which we encounter later on in this
thesis.

In the planar limit,where one sends theYang–Mills coupling constant g to zero and
the parameter N of the gauge group to infinity in such away that the ’t Hooft coupling
constant λ = g2N is kept fixed, the theory appears to be integrable. Integrability is
not conceptually tied to the presence of supersymmetry, although it does appear
within a supersymmetric theory in the present case. Integrable structures were first
observed within N = 4 SYM theory in the study of spectral problem, which could
be reformulated as an integrable spin chain [11]. This reformulation allowed for
spectacular progress [12, 13] in the study of two-point functions withinN = 4 SYM
theory, see also [14] for an overview.

It is a common belief that the availability of exact results is linked to the presence
of an underlying hidden symmetry. Such symmetries have indeed been observed for
different objects inN = 4 SYM theory, e.g. the symmetries of the dilatation operator
[15], which are relevant for the solution of the spectral problem, as well as the dual
superconformal or Yangian symmetry of scattering amplitudes [16, 17].

Much like the study of the integrable structures itself, the investigation of the
associated symmetry structures is typically a case-by-case study, although an inter-
esting attempt has been made recently [18] to study the symmetry of the action or
equations of motion of N = 4 SYM theory directly. Here, we aim at finding hidden
symmetries within N = 4 SYM theory in a systematic way. The object of study for
this investigation is the Maldacena–Wilson loop, which is a specific generalization
of the Wilson loop considered in generic Yang–Mills theories and naturally appears
in N = 4 SYM theory. The Wilson loop is a central object in any gauge theory, but
possibly even more so in N = 4 SYM theory and we will see shortly, why it is a
particularly suitable observable for the investigation of hidden symmetries.
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Concretely, the Maldacena–Wilson loop over a contour γ is given by [19, 20]

W (γ) = 1

N
tr

←−
Pexp

(
i
∫

γ

(
Aμ dx

μ + i �I |ẋ |nI
))

. (1.1)

Here, the gaugefields Aμ couple to the curveγ, which is described by the parametriza-
tion xμ(σ), whereas the scalar fields�I ofN = 4 SYM theory couple to a six-vector
nI (σ), which has unit length and thus describes a point on S5. We note that for
space-like contours, the Maldacena–Wilson loop is no longer a phase [21] due to
the appearance of the factor i in front of the scalars. A remarkable aspect of the
Maldacena–Wilson loop is that, due to cancellations between the gauge and scalar
fields, its expectation value is finite for smooth contours. This is a welcome prop-
erty for the study of symmetries, since it implies that potential symmetries are not
overshadowed by renormalization effects.

Another intriguing feature of the (Maldacena–)Wilson loop1 inN = 4 SYM the-
ory is the conjectured duality to scattering amplitudes [22–24], which relates cer-
tain scattering amplitudes to Wilson loops over specific, light-like polygons. Due
to the cusps of these contours, the Wilson loops are divergent, corresponding to the
infrared divergences of the scattering amplitudes. This implies that any symmetry
found for smooth Maldacena–Wilson loops could become anomalous for these con-
tours. Nonetheless, the correspondence provides a conceptual path to transfer any
symmetry found for the Maldacena–Wilson loop to other observables withinN = 4
SYM theory.

In the strong-coupling limit, the Maldacena–Wilson loop is described by the area
of a minimal surface ending on the conformal boundary of AdS5,

〈W (γ)〉 λ�1= exp
(
−

√
λ

2π Aren(γ)
)

. (1.2)

Here, we have restricted to the case where the vector nI is constant, the general case
will be discussed later on. In order to describe the boundary value problem, we use
so-called Poincaré coordinates (Xμ, y) for AdS5. In these coordinates, the metric is
given by

ds2 = dXμ dXμ + dy dy

y2
,

and the conformal boundary, which corresponds to infinity in AdS5, is given by the
Minkowski space located at y = 0. The minimal surface is then specified by the
boundary conditions

Xμ(τ = 0,σ) = xμ(σ) , y(τ = 0,σ) = 0 .

1Since the contours under consideration are light-like in this case, the Maldacena–Wilson and the
ordinary Wilson loop are the same object.
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The strong-coupling description of the Maldacena–Wilson loop is particularly suit-
able for the study of hidden symmetries, since the minimal surface is described by
classical string theory in AdS5, which is known to be integrable. The symmetries of
the string theory induce symmetry transformations of the boundary curve, which can
then be studied also at weak coupling.

This approach has been discussed in Ref. [25], where it was shown that the
Maldacena–Wilson loop is Yangian invariant in the strong-coupling limit. The weak-
coupling side of this finding was reported on also in Ref. [25] as well as the author’s
master’s thesis [26]. A Yangian invariance of the one-loop expectation value of the
Maldacena–Wilson loop could not be established, but it was observed that an exten-
sion of theMaldacena–Wilson loop into a non-chiral superspace is Yangian invariant.
Interestingly, a similar situation was observed for the lambda-deformations of mini-
mal surfaces in Euclidean AdS3, which were found by Kruczenski and collaborators
in Refs. [27, 28]. These deformations were studied at weak coupling by Dekel in
Ref. [29], where it was also found that they are not symmetries of the one-loop
expectation value of the Maldacena–Wilson loop.

The aim for this thesis is to complete the picture sketched above. In particu-
lar, we establish the connection between the Yangian symmetry and the lambda-
deformations and lift the discussion of the strong-coupling Yangian symmetry to the
superspace Wilson loop. The field theory description of this operator as well as its
Yangian symmetry at the one-loop level were completed in a parallel line of research
in Refs. [30, 31].

The thesis is structured as follows.Wefirst discuss the foundations for the research
presented in this thesis inChap.2. Here, wemainly focus on the underlying symmetry
structures and the Maldacena–Wilson loop. A short introduction to N = 4 SYM
theory and the AdS/CFT correspondence is also provided.

We then turn to the study of the Maldacena–Wilson loop at strong coupling. The
discussion of the symmetries of minimal surfaces in AdS5 naturally generalizes to a
class of spaces known as symmetric spaces and sowe discuss the symmetry structures
for minimal surfaces or strings in these spaces in general in Chap. 3. In addition
to a review of the integrability of symmetric space models, this chapter presents
the research published in Refs. [32, 33], which was carried out in collaboration
with Thomas Klose and Florian Loebbert. In particular, the relation between the
Yangian symmetry and Kruczenski’s lambda deformations is established. In fact, we
observe that the symmetry behind the lambda deformation is fundamental for the
integrability structure of symmetric space models and can be employed to construct
all other symmetry variations and hence we refer to it as the master symmetry. The
connections to the literature on symmetric space models, where parts of the results
had already been discussed, are discussed as well.

The application of the symmetries derived for generic symmetric space models
to minimal surfaces in AdS5 is discussed in Chap.4. Also this chapter is based on
Refs. [32, 33], although it includes a discussion of the large master symmetry trans-
formations of some analytically-known minimal surfaces, which was not published
before. Moreover, we discuss the variations of the boundary curves that follow from
the symmetries discussed before.
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With the symmetry variations of the contours established,we address the question,
if and how these symmetries can be extended to weak or even arbitrary values of the
’t Hooft coupling constant λ in Chap.5. The variation of the boundary curve obtained
in the previous chapter explains why the same transformation was not observed to
be a symmetry also at weak coupling in Ref. [29]. It turns out, however, that the mas-
ter symmetry variation can be generalized to a coupling-dependent variation which
does provide a symmetry of theMaldacena–Wilson loop at any value of the coupling
constant λ. Furthermore, we discuss the continuation of the Yangian symmetry gen-
erators from strong to weak coupling. In their original form as employed in Ref. [25],
the Yangian generators are not cyclic and this finding alone predicts that they are not
symmetries of the one-loop expectation value of the Maldacena–Wilson loop. While
there exists a possibility to adapt the generators in such a way that they become cyclic
[34], also the adapted generators do not form symmetries of the one-loop expectation
value of the Maldacena–Wilson loop, such that the result of Ref. [25] still holds.

This concludes the discussion of the Maldacena–Wilson loop and we turn to the
discussion ofWilson loops in superspace. In this case, the underlying symmetry alge-
bra is the superconformal algebra psu(2, 2|4), such that potential Yangian symmetry
generators are automatically cyclic due to the vanishing of the dual Coxeter number
of psu(2, 2|4). As in the field-theory construction of Ref. [25], the strong-coupling
description of the Wilson loop in superspace arises from the supersymmetric exten-
sion of the respective description of the Maldacena–Wilson loop. Instead of mini-
mal surfaces in AdS5 × S5, we thus consider minimal surfaces of the superstring in
AdS5 × S5, i.e. in the superspace appearing in the description of the Green–Schwarz
superstring in this space [35]. Appropriate boundary conditions for these minimal
surfaces which generalize the conformal boundary of AdS5 have been discussed in
Ref. [36].

The symmetry variations of the boundary curves again follow from the integra-
bility of the string theory that describes the minimal surface in the bulk space [37],
which we discuss in Chap.6. Here, we generalize the discussion to a class of models
known as semisymmetric space models. In addition to reviewing the construction
of the conserved charges, we also introduce the master symmetry for these models,
which was formulated for the pure spinor superstring in Ref. [38]. Moreover, we con-
struct an infinite tower of so-called bonus symmetry charges. Inspired by the master
symmetry, we find a more elegant approach than the one described in Ref. [39] by
the author. The results, however, remain unaltered.

The application to minimal surfaces in the AdS5 × S5-superspace is considered
in Chap.7, where we construct the expansion of the minimal surface around the
boundary curve in order to derive the Yangian symmetry generators for the super-
space Wilson loop at strong coupling. This chapter describes the results published
in Ref. [40], which were obtained in collaboration with Jonas Pollok.

The thesis is concluded by a summary of the results and an outlook on their
implications for possible future works in Chap.8. Technical aspects of some of the
topics which are important for our discussion are collected in the appendix.
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Chapter 2
Symmetries, Fields and Loops

This chapter provides a more detailed introduction to the concepts and objects which
form the foundation of the research on which this thesis reports. The focus lies on the
discussion of theMaldacena–Wilson loop as well as the various symmetry structures
that will be interesting with respect to it. As a prerequisite for the discussion of the
Maldacena–Wilson loop, brief introductions to N = 4 supersymmetric Yang–Mills
theory as well as the AdS/CFT correspondence are also given.

2.1 Symmetries

Symmetries are one of the most fundamental concepts of theoretical physics and
have served as an important guiding principle in the construction of new theories.
Since the research described in this thesis focuses on symmetry structures, it seems
fitting to begin with the basic symmetry structures that underlie our discussion.

2.1.1 Conformal Symmetry

We first discuss conformal transformations of d-dimensional Minkowski space
R

(1,d−1) both for infinitesimal and large transformations. The discussion of the large
conformal transformations and their singularities leads us to discuss the concept of
the conformal compactification, which will also be important in the discussion of the
AdS/CFT correspondence.

Conformal transformations are generalized isometries, which leave the angle
between two vectors invariant while generically changing their length. Stated more
formally, a conformal transformation is a map f : U ⊂ R

(1,d−1) → R
(1,d−1), which

satisfies f ∗η = e2ση, or in coordinates

© Springer Nature Switzerland AG 2018
H. Münkler, Symmetries of Maldacena-Wilson Loops from Integrable String Theory,
Springer Theses, https://doi.org/10.1007/978-3-030-03605-8_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03605-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-03605-8_2


10 2 Symmetries, Fields and Loops

∂ f (x)ρ

∂xμ

∂ f (x)σ

∂xν
ηρσ = e2σ(x) ημν , (2.1)

where σ(x) denotes an arbitrary, smooth function and η denotes the mostly-plus
metric of d-dimensional Minkowski space. We will see below that generic confor-
mal transformations have singularities in R

(1,d−1), and we have thus restricted their
definition to an open subset U of R(1,d−1). In order to find the conformal transfor-
mations of Minkowski space we first consider infinitesimal transformations. These
are described by vector fields ξ which satisfy the conformal Killing equation

2
(
∂μ ξν + ∂ν ξμ

) = (
∂ρ ξρ

)
ημν . (2.2)

Here, we have already taken a trace to express the arbitrary function appearing in
the infinitesimal version of equation (2.1) in terms of the vector field ξ. The large
transformations associated to these vector fields are given by the flows associated to
them: To each vector field ξ we can associate a set of integral curves γ

ξ
x0 , which are

defined by

∂τ γξ
x0(τ ) = ξ(γξ

x0(τ )) , γξ
x0(0) = x0 . (2.3)

The flow of the vector field ξ is then given by the map

σξ(τ , x0) = γξ
x0(τ ) , (2.4)

and for fixed values of τ it gives a diffeomorphism between open subsets of
Minkowski space. The conformal Killing equation ensures that these diffeomor-
phisms are conformal transformations. We note that it may not be possible to extend
the interval on which the integral curves are defined to all of R and this would in
turn restrict the domain of the flows. This behavior is related to the singularities of
the conformal transformations we encounter below.

Let us however stay with the infinitesimal transformations for a moment. From
the conformal Killing equation one may show that for d > 2 the vector fields ξ(x)
are polynomials with maximal degree two and based on this finding it is easy to see
that any conformal Killing field can be written as

ξ = aμ pμ + ωμν mμν + s d + cμ kμ . (2.5)

Here, we have introduced the following basis of vector fields for the conformal
algebra

pμ(x) = ∂μ ,

d(x) = xμ∂μ ,

mμν(x) = xμ∂ν − xν∂μ ,

kμ(x) = (
x2δν

μ − 2xμx
ν
)
∂ν .

(2.6)

The vector fields pμ and mμν generate translations and Lorentz-transformations and
span the Lie algebra of the Poincaré group. The non-vanishing commutators between
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these generators are given by

[
mμν,mρσ

] = ημσ mνρ + ηνρ mμσ − ημρ mνσ − ηνσ mμρ ,
[
mμν, pλ

] = ηνλ pμ − ημλ pν .
(2.7)

In addition to the Poincaré generators, we have the dilatation generator d as well
as the generators kμ of special conformal transformations. With these generators
included, we have the additional commutation relations

[
d, pμ

] = −pμ ,
[
d, kμ

] = kμ ,

[
mμν, kλ

] = ηνλ kμ − ημλ kν ,
[
pμ, kν

] = 2mμν − 2ημν d .
(2.8)

Here, we have again only written out the non-vanishing commutators. A noteworthy
aspect of the above commutation relations is that the commutator with d is diagonal
in the given basis, i.e. we have

[d, ta] = dim(ta) ta , (2.9)

where ta is one of the basis elements (2.6) and the dimensions of the generators are
given by

dim(pμ) = −1 , dim(kμ) = 1 , dim(mμν) = 0 . (2.10)

This aspect will prove to be crucial in the explicit construction of coset representa-
tives in Chap.4. One may show that the conformal algebra specified by the above
commutation relations is isomorphic to the Lie algebra so(2, 4).

We employ this isomorphism in order to construct a matrix representation of the
conformal algebra, which will be used in Chap.4. We note that we choose the basis
{Ta} for this representation in such a way that we have the commutation relations

[Ta, Tb] = f c
ba Tc = f c

ab Tc ,

where f c
ab denote the structure constants of the conformal Killing fields introduced

above, [ta, tb] = f c
ab tc, and the above relation defines the structure constants f c

ab of
the matrix generators. The reason for choosing this difference in the commutation
relation will become clear in Chap. 4, where we obtain the above conformal Killing
fields from a coset construction involving the basis {Ta}. We begin by defining the
generators in the fundamental representation of SO(2, d), for which we note

(MI J )
α

β = ηIβ δα
J − ηJβ δα

I . (2.11)

Here, the metric is given by ηI J = diag(−1, 1, . . . , 1,−1) and the indices I, J,α
and β take values in {0, 1, . . . , d + 1}. The above matrices satisfy the commutation
relations
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[MI J , MKL ] = ηI K MJL − ηI LMJK + ηJ LMI K − ηJ K MI L . (2.12)

We employ the trace to introduce a metric on the Lie algebra, which is given by

〈MI J , MKL〉 = tr (MI J MKL) = 2 ηI L ηJ K − 2 ηI K ηJ L . (2.13)

The basis elements introduced above may be related to the usual basis elements of
the conformal algebra by

Pμ = Mμ,N+1 − Mμ,N , Kμ = Mμ,N+1 + Mμ,N , D = −MN ,N+1 . (2.14)

Here, the index μ extends from 0 to d − 1. Apart from the commutation relations
(2.12), the non-vanishing commutators are given by
[
D, Pμ

] = Pμ ,
[
Mμν , Pλ

] = ημλPν − ηνλPμ ,
[
Pμ, Kν

] = 2ημν D − 2Mμν ,
[
D, Kμ

] = −Kμ ,
[
Mμν , Kλ

] = ημλKν − ηνλKμ . (2.15)

In addition to (2.13), we note the remaining non-vanishing elements of the metric

tr
(
Pμ Kν

) = 4 ημν , tr (D D) = 2 . (2.16)

We can introduce a Z2-grading on the conformal algebra by considering the auto-
morphism

�(X) = K XK−1 , where K = diag(1, . . . , 1,−1) . (2.17)

TheZ2-gradingwill be important for the coset construction discussed in the following
chapters. Here, we note that� is an involution,�2 = id, and hence it has eigenvalues
±1. We can then decompose the algebra into the eigenspaces,

h = {X ∈ so(2, d) : �(X) = X} , m = {X ∈ so(2, d) : �(X) = −X} . (2.18)

Since � is an automorphism, the above decomposition gives a Z2-grading, i.e. we
have

[h, h] ⊂ h , [h,m] ⊂ m , [m,m] ⊂ h . (2.19)

In terms of the generators introduced above, the subspaces h and m are given by

h = span
{
Mμν, Pμ − Kμ

}
, m = span

{
Pμ + Kμ, D

}
. (2.20)

The fundamental representationof the conformal group SO(1, d + 1) inEuclidean
space can be constructed in the same way, and the corresponding relations follow by
replacing ημν → δμν .
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Let us then turn to the discussion of the large conformal transformations. It is
easy to see that the dilatation d generates the scaling transformation xμ �→ e2s xμ.
The transformations associated to the generators kμ can be obtained by combining
the inversion map

I (x)μ = xμ

x2
(2.21)

with translations. One may show by explicit calculation that I (x) is a conformal
transformation and hence conclude that so is its concatenation with translations.
This leads us to consider the special conformal transformations

Kc = I ◦ Tc ◦ I , Kc(x)
μ = xμ + x2cμ

1 + 2c · x + c2x2
, (2.22)

where Tc(x)μ = xμ + cμ denotes a translation by cμ. Expanding the above transfor-
mation for small c shows that it is indeed the large transformation associated to the
generators kμ. We note that the special conformal transformations become singular
when x approaches the light-cone described by

0 = 1 + 2c · x + c2x2 = c2
(
x + c

c2

)2
, (2.23)

i.e. the light-cone centered at−c/c2. The special conformal transformations are hence
notwell-defined and thus do not strictly forma subgroupof the diffeomorphismgroup
ofR(1,3). In order to address this problem, one considers a conformal compactification
of Minkowski space, which we discuss below following Refs. [1–3]. The basic idea
is to include infinity in the space in a way that is compatible with the conformal
structure. This construction allows to lift the relation between the conformal algebra
and so(2, 4) to the respective symmetry groups and will also be important for our
discussion of the AdS/CFT correspondence.

In order to gain some intuition for the idea of the conformal compactification,
we discuss the two-dimensional Minkowski space R

(1,1) first. We treat this space
as an example for the higher-dimensional spaces we are interested in and hence we
leave out the conformal transformations that additionally appear in two-dimensional
spacetime and only consider the conformal transformations discussed above, which
appear for any dimension of the spacetime. In order to discuss infinity in spacetime
one typically employs the Penrose diagrams introduced in Ref. [4] and we begin
by constructing the diagram for two-dimensional Minkowski spacetime. We map
the coordinates (x0, x1) of Minkowski space R(1,1) to the region {(z0, z1) ∈ R

(1,1) :
−π < z0 ± z1 < π} by setting

z1 = arctan
(
x1 + x0

) + arctan
(
x1 − x0

)
,

z0 = arctan
(
x1 + x0

) − arctan
(
x1 − x0

)
,

(2.24)
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Fig. 2.1 Penrose diagram of R(1,1). The red, green and blue lines correspond to time-, light- and
space-like geodesics, respectively. Their images in the Penrose diagram approach the time-like past
and future infinities i− and i+, the light-like past and future infinitiesJ− andJ+ and the space-like
infinity i0

The metrics on the two spaces are then related by

(dx1)2 − (dx0)2 = (dz1)2 − (dz0)2

4 cos2 z1+z0

2 cos2 z1−z0

2

, (2.25)

such that the above mapping is conformal. Note that the metric induced by the
mapping diverges upon approaching the boundary of the Penrose diagram, which
is given by the edges z1 ± z0 = π and z1 ± z0 = −π. The divergence has to appear
since these edges correspond to infinity in Minkowski space. With infinity captured
in a finite domain, we can identify the different parts of the causal structure. For
this purpose, we consider the images of time-, light- and space-like geodesics of
Minkowski space in the Penrose diagram, cf. Fig. 2.1. The images of these geodesics
approach different parts of the boundary of the Penrose diagram and we discriminate
between the time-like past and future infinities i− and i+, the light-like past and
future infinities J − and J + and the space-like infinity i0. The light-like past and
future infinities correspond to the edges of the boundary, the time- and space-like
infinities are given by the cusp points.

To construct the conformal compactification, we drop the conformal factor in
Eq. (2.25) and consider the closure of the image of Minkowski space, which is the
entire region {(z0, z1) ∈ R

(1,1) : −π ≤ z0 ± z1 ≤ π}. However, in order to have a
conformal compactification,we have to be able to analytically continue the conformal
transformations of the original spacetime to the boundary. In order to seewhich condi-
tions this requirement entails, let us consider the special conformal transformations,
which are the only conformal transformations that map points inside Minkowski
space to infinity and vice versa.
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We consider the special conformal transformation Kc and take y to lie on the
critical light-cone, i.e.

(
y + c/c2

)2 = 0. For xε = y + εv, we find

Kc(xε)
μ = 1

2ε

yμ + cμy2

c2(vy) + vc
+ vμ + 2cμ(yv)

2
(
c2(vy) + vc

) + O(ε) ,

where we have assumed that v is not light-like (so that xε is not on the critical light-
cone) and y is not the center −c/c2 of the critical light-cone. We observe that for
ε → 0, Kc(xε) is asymptotically a straight line and a short calculation reveals that
it is light-like. We thus conclude that for ε → 0+ and ε → 0−, Kc(xε) approaches
opposite points in the light-like past and future infinity. For the case y = −c/c2, we
get

Kc(xε)
μ = 1

ε

c2vμ − 2(vc)cμ

c4v2
+ 1

c2
,

which is again a straight line and we find that the direction is either time-like or
space-like, depending on the sign of v2. Thus we find that Kc(xε) approaches the
time- and space-like infinities i0, i− and i+.

In order for analytic continuations of the special conformal transformations to
exist, the different points approached by Kc(xε) on the conformal boundary upon
approaching the same point y on the critical light-cone have to be identified with
each other. Schematically, we thus have the identification

and turn the Penrose diagram into a torus S1 × S1.
In order to generalize the above construction to d-dimensional Minkowski space

R
(1,d−1), we map it into the (periodically identified) Einstein static universe ESUd ,

which is the product manifold S1 × Sd−1.We use an angular coordinate z0 ∈ [−π,π)

for the one-dimensional sphere and embedding coordinates (z1, . . . , zd) for Sd−1,
such that the metric is given by

ds2ESU = −(dz0)2 + d�2
d−1 . (2.26)

If we iteratively introduce spherical coordinates in Sd−1 by

zd = cosϑ , z j = sin ϑ w j ,

d−1∑

j=1

(w j )2 = 1 , (2.27)

we obtain the metric
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ds2ESU = −(dz0)2 + dϑ2 + sin2 ϑ d�2
d−2 . (2.28)

We introduce spherical coordinates for the space-like part of R(1,d−1) as well, i.e. we
introduce the radius r = √

(x1)2 + · · · (xd−1)2 and obtain the metric

ds2MS = −(dx0)2 + dr2 + r2 d�2
d−2 . (2.29)

A conformal mapping of Minkowski space into ESUd is then given by

z0 = arctan
(
r + x0

) − arctan
(
r − x0

)
,

ϑ = arctan
(
r + x0

) + arctan
(
r − x0

)
,

(2.30)

and identifying the respective coordinates for the (d − 2)-dimensional spheres Sd−2.
Since we have r > 0, this mapping does not cover ESUd entirely but only the region
described by

−π < z0 < π , zd + cos z0 > 0 . (2.31)

Inverting the above mapping gives the relations

x0 = sin z0

cos z0 + zd
, x j = z j

cos z0 + zd
, (2.32)

and we see that we can extend this map to the region zd + cos z0 �= 0 to obtain a
double cover of Minkowski space. Alternatively, we can identify antipodal points on
the two spheres by setting

z0 ∼ z0 ± π , z j ∼ −z j , zd ∼ −zd ,

and obtain a one-to-one mapping to Minkowski space with the conformal boundary
identified as the set of points described by zd + cos z0 = 0. Below, we describe an
equivalent construction of the conformal compactification. The one described above
is of particular interest for the discussion of the conformal boundary of Anti-de Sitter
space AdSd .

We consider the light-cone in projective space also known as the Dirac cone,
cf. Ref. [5], where it was first considered. We identify points w ∈ R

(2,d) by the
equivalence relation

w ∼ w′ ⇔ ∃� �= 0 : w = �w′ , (2.33)

and consider the image of the null cone,

N(1,d−1) = {w �= 0 : w2
−1 − w2

0 + w2
1 + . . . + w2

d = 0}/∼ , (2.34)
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under the projection onto the equivalence classes. The conformal map to Minkowski
space can be written as

xμ = wμ

w−1 + wd
. (2.35)

Note that the right-hand side is scale-invariant, such that it is indeed well-defined on
the equivalence classes [w] ∈ N(1,d−1). The region corresponding to w−1 + wd �= 0
is mapped toMinkowski space in one-to-one fashion andN(1,d−1) is indeed identified
as the conformal compactification in Minkowski space, such that the region w−1 +
wd = 0 corresponds to the conformal boundary. The conformal transformations of
Minkowski space can be analytically continued there, cf. Ref. [2] for more details.

Using the above construction, we can map isometries � ∈ SO(2, d) of R(2,d) to
maps �� : N(1,d−1) → N(1,d−1), which correspond to conformal transformations in
Minkowski space. In fact, these are the sought-after analytic continuations and they
clarify the relation between the conformal group of Minkowski space and SO(2, d).
Due to the equivalence relation (2.33), we note that�� = �−� and hence the confor-
mal group is identified as1 SO+(2, d) or SO+(2, d)/{±Ed+2}, respectively, depend-
ing on whether or not d is even.

2.1.2 N = 4 Superconformal Symmetry

We now turn to the discussion of theN = 4 supersymmetric extension of the confor-
mal algebra so(2, 4). We follow the approach of Ref. [6], where the superconformal
algebra is obtained by including Poincaré supersymmetry generators in the confor-
mal algebra and repeatedly applying the Jacobi identity in order to deduce the other
generators and commutators. It is also instructive to discuss the fundamental rep-
resentation of the superconformal algebra in terms of (4|4) × (4|4) supermatrices
as in Ref. [7, 8]. As a prerequisite for our discussion of strings or minimal surfaces
in semisymmetric spaces, we also discuss the fundamental representation of the
superconformal algebra below. More details on our conventions and the choice of
generators are collected in Appendix A.2.

The supersymmetry generators carry spinor indices and in order to be able to
write the commutation relations in a compact fashion it is convenient to use spinor
indices for the generators of the conformal algebra as well. Using the conventions
introduced in Appendix A.1, we note the following generators:

pα̇α = σμ α̇α pμ , kαα̇ = �σμ
αα̇ kμ ,

m β
α = (σμν) β

α mμν , �mα̇
β̇

= (�σμν)α̇
β̇
mμν . (2.36)

1The subscript + denotes the connected component of the unit element.
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The commutation relations of these generators can be carried over straight-forwardly
from the commutation relations given above by applying the spinor identities pro-
vided in Appendix A.1. The commutation relations of the generators m and �m can
be written out conveniently by noticing that they only depend on the spinor indices
and their position,

[
m β

α , Jγ

] = −2i δβ
γ Jα + iδβ

α Jγ ,
[�mα̇

β̇
, J γ̇

] = −2i δ
γ̇

β̇
J α̇ + iδα̇

β̇
J γ̇

[
m β

α , J γ
] = 2i δγ

α J
β − iδβ

α J
γ ,

[�m α̇
β̇
, Jγ̇

] = 2i δα̇
γ̇ Jβ̇ − iδα̇

β̇
Jγ̇ .

(2.37)

Additionally, we note the commutator

[
pα̇α , kββ̇

] = 2i δα̇
β̇
m α

β − 2i δα
β �mα̇

β̇
+ 4 δα̇

β̇
δα
β d . (2.38)

We then include the supersymmetry generators q α
A and�q α̇A, whose anti-commutator

gives the translation generator,

{
q α
A , �q α̇B

} = −2i δB
A pα̇α . (2.39)

Here, we consider an extension that does not contain central charges Z AB , i.e. we
have

{
q α
A , q β

B

} = 0 ,
{�q α̇A , �q β̇B

} = 0 . (2.40)

The transformation of the spinor charges with respect to the sl(2,C) generators
m β

α and �m α̇
β̇
can be read off from Eq. (2.37) and we note that the supersymmetry

generators have half of the dimension of p, i.e. we have the commutation relations
(2.9) with

dim(q) = dim(q̄) = −1

2
. (2.41)

An additional set of superconformal generators arises from calculating the commu-
tator with kαα̇, which gives

[
kαα̇ , q β

A

] = +2i δβ
α�sAα̇ ,

[
kαα̇ , �q β̇A

] = −2i δ
β̇
α̇ s A

α . (2.42)

These generators are the counterparts of the supersymmetry generators associated to
k,

{
s Aα , �sBα̇

} = −2i δA
B kαα̇ , (2.43)

and hence we note that in addition to the commutation relations (2.37) they have half
of the dimension of k,
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dim(s) = dim(�s) = 1

2
. (2.44)

In analogy to the commutation relations (2.42), we note the commutators

[
pα̇α , s A

β

] = −2i δα
β �q α̇A ,

[
pα̇α , �sAβ̇

] = +2i δα̇
β̇
q α
A . (2.45)

The non-vanishing commutators between the supersymmetry and special supercon-
formal generators are given by

{
q α
A , s B

β

} = −2i δB
A m

α
β − δα

β r BA − 2 δB
A δα

β (d + c) ,

{�q α̇A , �sBβ̇

} = −2i δA
B �m α̇

β̇
− δα̇

β̇
r AB + 2 δA

B δα̇
β̇

(d − c) .
(2.46)

Here, c is the central charge of the superconformal algebra su(2, 2|4), which com-
mutes with all other generators. Representations of the above algebra, in which
the central charge is absent, c = 0, are denoted by psu(2, 2|4). The above anti-
commutator moreover produces the R-symmetry generators r AB , which correspond
to the R-symmetry group SU(4). As for the Lorentz generators, their commutation
relations with the other generators of the algebra only depend on the set of indices
and their positions,

[
r AB , JC

] = −4 δCB J
A + δA

B J
C ,

[
r AB , JC

] = 4 δA
C JB − δA

B JC . (2.47)

The commutation relations also show that
∑

A r
A
A = 0, such that we indeed have

15 linearly independent R-symmetry generators for the R-symmetry group SU(4).
A crucial aspect of the superconformal algebra is noted in Ref. [6]: The R-symmetry
generators form a part of the superconformal algebra and are not merely outer auto-
morphisms of it. They are thus necessarily symmetries of a superconformally invari-
ant action, which is not generically the case for super Poincaré algebras.

It is a difficult task in general to extend the representation (2.6) of the conformal
algebra in terms of vector fields on Minkowski space to a representation of the
superconformal algebra on a superspace containing this space as the bosonic base.
In fact, Ref. [9] failed to do this correctly. We will construct such a representation
explicitly inChap.7,where it follows automatically from the superstring cosetmodel.

We now turn to the discussion of the fundamental representation of u(2, 2|4), for
which we follow Ref. [7]. The representation is based on (4|4) supermatrices, i.e.
matrices

N =
(
m θ
η n

)
, (2.48)
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for which the entries of the off-diagonal blocks θ and η are Graßmann odd2 numbers.
The set of all such supermatrices satisfying the reality condition

N =
(−H m†H−1 −H η†

−θ†H−1 −n†

)
= −

(
H 0
0 14

)
N †

(
H−1 0
0 14

)
(2.49)

is denoted by u(2, 2|4) and we note that the lower left block gives a representation
of u(4). For the complex conjugation of the Graßmann odd numbers, we note the
conventions

(c θ)∗ = c∗ θ∗ , θ∗ ∗ = θ , (θ1 θ2)
∗ = θ∗

2 θ∗
1 , (2.50)

where c denotes an ordinary complex number and θ a Graßmann odd number. These
conventions ensure that commutators of supermatrices satisfying the reality con-
straint (2.49) again satisfy (2.49). The matrix H is given by

H =
(
0 12
12 0

)
, (2.51)

and since it has split signature, we note that the upper right blocks of the matrices
N form a representation of u(2, 2). The choice of the matrix H differs from the one
made in Ref. [7] and is better adapted to the choice of generators that are typically
used on the field theory side, cf. also Ref. [8]. The different choices for the matrix
H are related by a unitary transformation.

We can introduce a Z4-grading on u(2, 2|4) by using the map

�(N ) = −K N st K−1 , K =
(
K 0
0 K

)
, K =

(−iσ2 0
0 −iσ2

)
, (2.52)

Here, N st denotes the super-transpose

N st =
(
m t −ηt

θt nt

)
, (2.53)

and we note that �4 = id. The map � gives an automorphism of gl(4|4) and intro-
duces a Z4-grading by decomposing gl(4|4) into its eigenspaces,

gl(4|4) = gl(4|4)(0) ⊕ gl(4|4)(2) ⊕ gl(4|4)(1) ⊕ gl(4|4)(3) ,

gl(4|4)(k) = {
N ∈ gl(4|4) : �(N ) = i k N

}
.

(2.54)

2Here,we follow the conventions ofRef. [7].Onemayalso introduce supermatriceswithout referring
to Graßmann odd numbers, cf. Refs. [8, 10].
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We can project any element of gl(4|4) onto the eigenspace for the eigenvalue i k with
the projectors

P (k)(N ) = N (k) = 1
4

(
N + i3k�(N ) + i2k�2(N ) + i k�3(N )

)
. (2.55)

While the automorphism � clearly does not map u(2, 2|4) to itself, the projectors
P (k) do, and we can hence carry over the above Z4-grading to u(2, 2|4), i.e. we have

u(2, 2|4) = g(0) ⊕ g(2) ⊕ g(1) ⊕ g(3) , g(k) = {
P (k)(N ) | N ∈ u(2, 2|4)} ,

[
g(k) , g(l)

] ⊂ g(k+l)mod4 . (2.56)

In Appendix A.2, we introduce a basis of generators for u(2, 2|4). As already for
the conformal algebra discussed above, the generators are chosen in such a way that
they satisfy the commutation relations

[Ta, Tb] = f c
ba Tc = f c

ab Tc ,

where f c
ab denote the structure constants of the generators introduced in the beginning

of this subsection, [ta, tb] = f c
ab tc . Here, we only note two of the generators, the

central charge C and the hypercharge generator B, which are given by

C = 1

2

(
14 0
0 14

)
, B = −1

2

(
0 0
0 14

)
. (2.57)

The algebra su(2, 2|4) is reached by restricting to elementswith vanishing supertrace,

str(N ) = tr(m) − tr(n) = 0 ,

which corresponds to leaving out the hypercharge generator B. A representation
in which additionally the central charge C vanishes is denoted by psu(2, 2|4). In
these two cases, the bosonic subalgebras are given by su(2, 2) ⊕ su(4) ⊕ u(1) or
su(2, 2) ⊕ su(4), respectively.

We can employ the supertrace to introduce a metric Gab = str(TaTb) on the
algebra. The metric satisfies the symmetry property Gab = (−1)|a| Gba , where
|a| = deg(Ta) denotes the Graßmann degree of a homogeneous basis element, i.e.
|a| = 0 or 1 for an even or odd generator, respectively. The components of the metric
for a set of generators of u(2, 2|4) are collected in Appendix A.2. Here, we note that

str(B C) = 1 (2.58)

and all other components of the metric that involve the generators B or C vanish.
The metric is hence degenerate for the superalgebra su(2, 2|4), but not for u(2, 2|4)
or psu(2, 2|4).
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2.1.3 Yangian Symmetry

A typical feature of many integrable models is the appearance of Yangian symmetry,
which can be viewed as a generalization of Lie algebra symmetries. The Yangian
Y[g] over a simple Lie algebra g was introduced by Drinfeld in Refs. [11, 12] and
has played an important role in the study of integrable systems since. While it was
first mainly studied in the context of integrable two-dimensional field theories, cf.
e.g. Refs. [13–15], it has also been encountered withinN = 4 supersymmetric Yang–
Mills theory both in the context of anomalous dimensions or the associated integrable
spin chains [16–20] as well as for scattering amplitudes [21–24].

Below, we give a short and introductory review to the so-called first realization
of the Yangian, which is based on Refs. [25, 26] as well as the author’s master’s
thesis [27], where the reader may find an accessible account of some of the algebraic
prerequisites which are not elaborated on below. Other interesting accounts of Yan-
gian symmetry can be found in Refs. [28–31] as well as [32], which contains many
technical details.

The Yangian Y[g] is an infinite-dimensional extension of the underlying Lie alge-
bra g and we can organize the generators in levels, beginning with the level zero,
which is spanned by the generators J(0)a of g. The full algebra can be obtained by addi-
tionally specifying the generators J(1)a , which span the level one. The higher levels
can then be obtained from repeated commutators of the level-1 generators.

In order to discuss the algebraic structure of the Yangian, it is perhaps simplest
not to consider the completely abstract setting right away. Rather, we consider an
N -site space, which could arise from e.g. a spin chain or a color-ordered amplitude
describing the interaction of N particles. This has the advantage that the meaning of
the product of two generators is clear and we do not have to introduce an enveloping
algebra to define it. At each site i , we have a representation of the underlying Lie
algebra g in terms of generators Ja,i , for which we note the commutation relations

[
Ja,i , Jb,k

] = δik f c
ab Jc,i . (2.59)

In this situation, the level-0 and level-1 Yangian generators typically have the form

J(0)a =
N∑

i=1

Ja,i , J(1)a = f cb
a

∑

i<k

Jb,i Jc,k , (2.60)

and a simple calculation shows that they obey the commutation relations

[
J(0)a , J(0)b

] = f c
ab J(0)c ,

[
J(0)a , J(1)b

] = f c
ab J(1)c . (2.61)

The commutators of two level-1 generators are more involved and contain the level-2
generators. We see directly that it contains terms which act on three sites. A crucial
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aspect of the above generators is that they obey the Serre relation3

fd[ab
[
J(1)c] , J(1)d

] = 1

12
f d
ag f e

bh f f
ck fghk J(0)(d J(0)e J(0)f ) . (2.62)

This was shown in Ref. [20] in the case of the underlying Lie algebra being given by
su(N ). Let us elaborate on this relation for a moment. It is instructive to compare the
Yangian algebra to the polynomial algebra g[u] over the Lie algebra g. An appropriate
basis for the polynomial algebra is given by the generators J (n)

a = un Ja , where Ja
are the generators of g. For these generators, we note the commutation relations

[
J (n)
a , J (m)

b

] = f c
ab J (n+m)

c . (2.63)

The polynomial algebra is sometimes referred to as half of a loop algebra, since
above we are assuming m and n non-negative. For the above algebra, we note that
the left-hand side of the Serre relation (2.62) vanishes due to the Jacobi identity. In
this sense, the Serre relation is sometimes referred to as a generalized Jacobi identity
and the Yangian algebra may be viewed as a deformation of the universal enveloping
algebra of the polynomial algebra. The Serre relation constrains the construction of
higher-grade elements of the Yangian algebra. If we define an element of grade two
by4

J(2)a = 1

2c
f bc
a

[
J(1)c , J(1)b

]
,

the commutator of the level-1 generators can be expressed as

[
J(1)b , J(1)c

] = f d
bc J(2)d + Xbc ,

where f cb
a Xbc = 0. The imposition of the Serre relation then uniquely determines

Xbc, cf. Ref. [28] for details.
Abstractly, one may define the Yangian algebra as the algebra generated by J(0)a

and J(1)a , such that the commutation relations (2.61) and the Serre relation (2.62)
hold true. The explicit construction is similar to the construction of the universal
enveloping algebra of a Lie algebra, which we review now.

The idea behind this construction is to embed a Lie algebra into an algebra in such
a way that the Lie bracket and the algebra product are compatible, i.e. we have

ι ([A, B]) = ι(A) ⊗ ι(B) − ι(B) ⊗ ι(A) , (2.64)

3The brackets denote the symmetrization or anti-symmetrization of the enclosed indices, specifically
we define X(i1...in ) = 1

n!
∑

σ∈Sn Xiσ(1)...iσ(n)
as well as X[i1...in ] = 1

n!
∑

σ∈Sn sign(σ)Xiσ(1)...iσ(n)
. We

note moreover that in the case of g = su(2), the Serre relation is replaced by another relation, which
is otherwise implied, cf. Ref. [28].
4Here, c denotes the dual Coxeter number, which arises in the contraction f bc

a f d
cb = 2cδda .
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where A, B are elements of the Lie algebra and ι denotes the inclusion map from the
Lie algebra into the universal enveloping algebra and ⊗ denotes the algebra product.
The universal enveloping algebra can be constructed by appropriately identifying
elements in the tensor algebra

T (g) =
⊕

n≥0

g⊗n . (2.65)

Here, g⊗n denotes the n-fold tensor product of g and we have set g⊗0 = R, assuming
we are considering a real Lie algebra. The algebra product in the tensor algebra is
simply given by the tensor product. The Lie algebra is naturally embedded in the
tensor algebra by simply mapping it to the copy of g in the direct sum in equation
(2.65). The appropriate way to achieve the identification (2.64) is to factor out a
two-sided ideal I, which contains all elements of the form

[x, y] − x ⊗ y + y ⊗ x ,

with x, y ∈ g. A two-sided ideal I is a subspace of the algebra for which the mul-
tiplication with algebra elements from either side lies again in I. This structure is
needed to ensure that when we carry over the algebra structure of T (g) to the factor
algebra T (g)/I the definitions do not depend on the representatives of the equiva-
lence classes. Here, we could write it explicitly as the set of all linear combinations
of elements of the form

r ⊗ ([x, y] − x ⊗ y + y ⊗ x) ⊗ s

with r, s ∈ T (g) and with x, y ∈ g as before. We have thus simply enforced the
desired relation (2.64) by factoring out I and note that the universal enveloping
algebra is precisely the factor algebra T (g)/I.

The Yangian Y[g] can be constructed similarly by considering an enveloping
algebra of g ⊕ span{J(1)a } and enforcing the commutation relations (2.61) as well as
the Serre relation (2.62) e.g. in the waywe have discussed above. In this construction,
the product of level-0 generators on the right-hand side of the Serre relation is just
given by the product in the enveloping algebra.

An important aspect of the Yangian algebra is that it can be equipped with a
Hopf algebra structure with the coproduct � : Y[g] → Y[g] ⊗ Y[g] satisfying the
relations

�
(
J(0)a

) = J(0)a ⊗ 1 + 1 ⊗ J(0)a ,

�
(
J(1)a

) = J(1)a ⊗ 1 + 1 ⊗ J(1)a + 1

2
f cb
a J(0)b ⊗ J(0)c .

(2.66)

A Hopf algebra contains more structure than the coproduct specified above, the
reader is invited to consult Ref. [26, 27] for a short introduction to Hopf algebras
and more details on the specific Hopf algebra structure of the Yangian. Here, we will
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be satisfied with just pointing out the implications of the above coproduct structure.
Along with the trivial coproduct �(1) = 1 ⊗ 1, the above definitions completely
specify the coproduct on Y[g]. This is due to the facts that the coproduct is required
to be an algebra morphism in a Hopf algebra and that we can obtain any element of
the Yangian as linear combinations of products of the level-0 and level-1 generators.
The algebra constraints (2.61) and (2.62) are compatible with this requirement. It is
shown explicitly in Ref. [32] that when we require the relations (2.61), we must also
include the Serre relation (2.62) in order for � to become an algebra morphism.

The coproduct alsomotivates the level-1 generators given inEq. (2.60). Ifwe begin
with some representation of the Yangian on a single-site space, we may employ the
coproduct to obtain a representation on a two-site space. The two-site representation
of the level-1 generators would then contain the contribution

f cb
a J(0)b ⊗ J(0)c

and in fact the level-1 generator in Eq. (2.60) is obtained by summing these contri-
butions over all pairs of two sites.

We note that the Yangian algebra is invariant under the map J(1)a �→ J(1)a + αJ(0)a .
This is easy to see for the commutation relation (2.61) and follows from the Jacobi
identity for the Serre relation (2.62). For the N -site space discussed above, we can
more generally add a local contribution of the form

J(1)a,lo =
N∑

i=1

vi Ja,i (2.67)

to the level-1 generators J(1)a without altering the Yangian algebra relations. We will
see inChap.5 that this local contribution can be employed to control the starting-point
dependence of the level-1 generators, cf. Ref. [33].

2.2 N = 4 Supersymmetric Yang–Mills Theory

We introduceN = 4 supersymmetric Yang–Mils (SYM) theory, which is the unique
gauge theory in four dimensions with this amount of supersymmetry. This is themax-
imal amount of supersymmetry in four dimensions, since any theory with N > 4
would have to contain particles with spin s > 1 and would hence not be renormaliz-
able.

A convenient way to derive the action of N = 4 SYM theory is given by con-
sidering the dimensional reduction of ten-dimensional N = 1 SYM theory to four
dimensions. This approach was first described in Ref. [34]. The ten-dimensional
gauge theory contains the gauge field Am and a ten-dimensional Majorana–Weyl
spinor �. We take the gauge group to be SU(N ), such that all fields take values in
the Lie algebra su(N ),
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Am = Aa
m ta , � = �a ta . (2.68)

Here, the generators ta denote a basis of su(N ), for which we choose the convention
2 tr(ta tb) = δab. We note the expressions for the covariant derivative and the field
strength,

Dm� = ∂m� − i [Am, �] , Fmn = ∂m An − ∂n Am − i [Am, An] . (2.69)

The conventions are chosen in such a way that the fields have classical mass dimen-
sions [A] = 1 and [�] = 3/2, whereas the Yang–Mills coupling constant g10 in ten
dimensions has dimension [g10] = −3. The action then takes the form

S = 1

g210

∫
d10x tr

(− 1
2 Fmn F

mn + i�̄ �mDm �
)
. (2.70)

Here, the matrices �m are ten-dimensional Dirac matrices, which satisfy the Clifford
algebra for R(1,9),

{
�m, �n

} = −2ηmn 1 . (2.71)

Note that we are working with the mostly-plus convention η = diag(−,+, · · · ,+).
Apart from the gauge invariance under the transformations

Am �→ U (x) (Am + i ∂m)U (x)† , � �→ U (x)�U (x)† , (2.72)

the action is invariant under the supersymmetry transformations

δξAm = i ξ̄ �m � , δξ� = i
2 Fmn �mn ξ . (2.73)

The supersymmetry parameter ξ is a constant, ten-dimensional Majorana–Weyl
spinor and the matrices �mn are defined by �mn = i

2 [�m, �n].
The dimensional reduction to four dimensions is obtained by demanding that the

fields only depend on the coordinates xμ of R(1,3) ⊂ R
(1,9). The remaining volume

integrals in the action, V = ∫
dx4 . . . dx9, are absorbed by a redefinition of the cou-

pling constant, g = V−1/2g10, which is then dimensionless. The independence of the
fields on the coordinates x4 to x9 implies in particular that

∂m An(x) = 0 , ∂m�(x) = 0 , ∂mU (x) = 0 , (2.74)

form taking values in {4, 5, . . . , 9}. Since also the gauge transformations only depend
on the first four coordinates, we note that the fields

�I = AI+3 , I ∈ {1, 2, . . . , 6}, (2.75)
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no longer transform as gauge fields, but transform simply in the adjoint representa-
tion,

�I �→ U (x)�IU (x)† . (2.76)

These are scalar fields from the four-dimensional viewpoint, i.e. with respect to the
Lorentz group in R(1,3). The discussion of the spinor fields is facilitated by choosing
an appropriate representation of the ten-dimensional Clifford algebra, which dis-
criminates naturally between the four- and six-dimensional spinor indices. For the
choice introduced in Appendix A.1, the left-handed Weyl spinor � takes the form

� = (
� A

α , 0, 0, �̃ α̇
A

)T
. (2.77)

TheMajorana condition then implies that� A
α = (�̃Aα̇)∗. The original spinor indices

in ten dimensions are split up into the four-dimensional spinor indicesα, α̇ and the R-
symmetry indices labeled by A ∈ {1, . . . , 4} above. They correspond to the subgroup
SO(6)∼SU(4) of the ten-dimensional Lorentz group. From the four-dimensional
viewpoint we are thus considering a set of four four-dimensional Majorana spinors.

In order to write out the action (2.70) in terms of the fields
(
Aμ,�I , �

A
α , �̃ α̇

A

)
,

it is convenient to employ thematrices	 I and �	 I , which are introduced in Appendix
A.1 as the blocks of the six-dimensional Dirac matrices, to associate R-symmetry
indices to the scalar fields,

�AB = 1√
2

	 I AB �I , ��AB = 1√
2

�	 I
AB �I = 1

2
εABCD �CD . (2.78)

The contractions of the different indices are related by the identity

��AB �AB = 2�I �I . (2.79)

Writing out the action (2.70) in terms of the fields discussed above, we find the action
of N = 4 supersymmetric Yang–Mils theory in four dimensions to be given by

S = 1

g2

∫
d4x tr

(
− 1

2 FμνF
μν + 1

2

(
Dμ��AB

) (
Dμ�AB

)
+ 1

8

[ ��AB , ��CD
] [

�AB ,�CD
]

+ 2i �̃A α̇ Dα̇β � A
β + √

2 �̃A α̇

[
�AB , �̃ α̇

B

] − √
2�αA

[��AB , � B
α

] )
. (2.80)

The above action inherits the invariance under the supersymmetry transformations
(2.73) from the ten-dimensional theory, which appears as N = 4 supersymmetry
after decomposing the ten-dimensional spinor into four-dimensional spinors as for
the gluino fields above. In addition to the Poincaré and supersymmetry invariance,
the action is classically invariant under the scale transformations

x �→ e−s x , A �→ es A , � �→ es �, � �→ e3s/2 � ,
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and indeed also invariant under conformal transformations, such that the N = 4
Poincaré supersymmetry is extended to the superconformal symmetry psu(2, 2|4).
However, the conformal symmetry of a theory is often broken by the introduction of
a renormalization scale μ in the quantum theory. The observables of the theory then
become scale-dependent due to the scale dependence of the parameters of the theory.
The scale dependence of the coupling constant g, which is the only parameter of the
theory for fixed N , is described by the beta function

β = μ
dg

dμ
. (2.81)

The beta function of N = 4 SYM theory is believed to vanish to all orders in per-
turbation theory and also non-perturbatively, cf. Refs. [35–40]. This implies that the
conformal symmetry of the classical theory also holds true for the quantum theory,
which thus still has the full psu(2, 2|4)-invariance.

Since the coupling constant is not running, the theory is described by two freely
tunable parameters: the coupling constant g and the parameter N describing the
dimension of the gauge group SU(N ). The two parameters are often combined to
the ’t Hooft coupling constant

λ = g2N , (2.82)

such that observables can be described in the double expansion in λ and N−1. In
this thesis, we will mainly consider the limit of large N , in which we send N → ∞
and g → 0 in such a way that the ’t Hooft coupling constant λ is kept fixed [41].
This limit is known as the planar limit, since the dominant diagrams in this limit are
planar in the double-line notation. It is in this limit that the aforementioned integrable
structures in N = 4 supersymmetric Yang–Mills theory appear.

2.3 The AdS/CFT Correspondence

Another important aspect of N = 4 supersymmetric Yang–Mills theory is the con-
jectured duality to type IIB superstring theory on AdS5 × S5, which was proposed
in Refs. [42] and further elaborated in Refs. [43, 44]. This duality provided the first
concrete realization of ’t Hooft’s idea of a string/gauge duality [41], which was based
on the finding that the 1/N -expansion in a large-N field theory can be viewed as
a genus expansion for the discrete surfaces arising from the theory’s Feynman dia-
grams. Below, we give a brief overview over the conjectured duality. For a detailed
introduction, the reader is referred to the reviews [45–47] or the textbook [48].
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2.3.1 Anti-de Sitter Space

The duality betweenN = 4 supersymmetric Yang–Mills theory and superstring the-
ory on AdS5 × S5 is called holographic, since the field theory is considered to live in
the (conformal) boundary of Anti-de Sitter space. We discuss this relation explicitly
below.

Anti-de Sitter space AdSd+1 can be introduced as the hyperquadric in R
(2,d)

defined by

−Z2
−1 − Z2

0 + Z2
1 + · · · + Z2

d = −R2 , (2.83)

where R is the radius of AdSd+1, which we will set to R = 1 in our below discussion
of different coordinates systems of AdSd+1 and the conformal compactification. A
frequently-used coordinate system is formed by the global coordinates, which are
introduced by

Z−1 = cosh ρ cos τ , Z0 = cosh ρ sin τ , Z j = sinh ρ v j , (2.84)

where v j are embedding coordinates for a (d − 1)-dimensional sphere Sd−1, i.e. they
satisfy the constraint

∑d
j=1 v2

j = 1. In these coordinates, the AdS-metric is given by

ds2AdS = dZμdZμ − dZ−1dZ−1 + dZddZd

= − cosh2 ρ dτ 2 + dρ2 + sinh2 ρ d�2
d−1 . (2.85)

Alternatively, one often uses Poincaré coordinates (Xμ, y), which are given by

Zμ = Xμ

y
, Z−1 + Zd = 1

y
, Z−1 − Zd = XμXμ + y2

y
, (2.86)

where μ takes values in {0, 1, . . . , d − 1}. It is easily checked that this parametriza-
tion satisfies the embedding relation (2.83) and for the induced metric, we have

ds2AdS = dXμdXμ + dy2

y2
. (2.87)

Note that the Poincaré patch given by y > 0 covers only one half of AdSN , which is
described by Z−1 + Zd > 0.

For the construction of the conformal compactification, we initially work with
global coordinates and map AdSd+1 into the Einstein static universe ESUd+1, where
we again introduce spherical coordinates for the space-like part by setting

zd+1 = cosϑ , z j = sin ϑ u j . (2.88)

The map from AdSd+1 into the Einstein static universe ESUd+1 is then described by
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τ = z0 , sinh ρ = tan ϑ , v j = u j , (2.89)

and onemay show that it is conformal by direct calculation.We see that the conformal
boundary is assumed at the equator ϑ = π/2 of the sphere Sd , which corresponds
to the Einstein static universe ESUd of one dimension less. In our above discussion
of the conformal compactification, we have seen that ESUd gives a double cover of
d-dimensionalMinkowski space.More precisely, we havemappedMinkowski space
to the region cos z0 + zd > 0, which covers one half of this space.

The relation between AdSd+1 and its conformal boundary is clearest when we use
Poincaré coordinates. These cover the region Z−1 + Zd > 0, which corresponds to
the region

cos z0 + tan ϑ

sin ϑ
√
1 + tan2 ϑ

zd > 0 (2.90)

in the Einstein static universe ESUd+1. In the boundary limit 2ϑ → π−, we thus
approach the region cos z0 + zd > 0, in which we have mapped Minkowski space.
The boundary limit y → 0 in Poincaré coordinates thus approaches the Minkowski
space located at y = 0 as the form of the metric suggests.

The Wick rotation to Euclidean AdSd+1 is subtle but again one reaches the con-
clusion that in Poincaré coordinates one approaches a flat Euclidean space Rd in the
boundary limit. A discussion of the Euclidean case can be found e.g. in Ref. [44].

2.3.2 The Correspondence

The correspondence between N = 4 SYM theory and type IIB superstring theory
on AdS5 × S5 was proposed based on the consideration of N parallel D3 branes,
which extend along a (3 + 1)-dimensional plane in (9 + 1)-dimensional Minkowski
space, and the study of the low-energy limit of this system. The branes are separated
by a distance r and the low-energy limit can be considered as the limit of taking
(r,α′) → 0 in such away that the ratio between them is kept fixed [42]; this procedure
is known as the Maldacena limit.

The system can be viewed in two different ways. In one approach, the low-
energy limit leads to two decoupled systems, free type IIB supergravity in the ten-
dimensional bulk space andN = 4 supersymmetric Yang–Mills theory on the (3+1)-
dimensional brane. The second approach is based on an insight of Polchinski [49]
and again leads to two decoupled systems. The first is again given by free type IIB
supergravity in the the ten-dimensional bulk space, the second is the geometry near
the horizon of the D3 branes, which turns out to be given by AdS5 × S5.

The conjecture then arises from identifying the second systems appearing in the
two descriptions, concretely the conjecture states the duality:



2.3 The AdS/CFT Correspondence 31

N = 4 supersymmetric SU(N ) Yang–Mills theory
in four-dimensional Minkowski space

←→
type IIB superstring theory on AdS5 × S5 with equal

radii R and N corresponding to the flux of the
five-form Ramond–Ramond field strength on S5.

An immediate consistency check of this identification is to note that both sys-
tems have an underlying PSU(2, 2|4)-symmetry. We have seen this above forN = 4
supersymmetric Yang–Mills theory; for the string theory on AdS5 × S5 it arises
from the inclusion of supersymmetry in the isometry algebra so(2, 4) ⊕ so(6) �
su(2, 2) ⊕ su(4) of AdS5 × S5.

The parameters of the two theories are related by

g2 = 4π g2s , 2πT = √
λ = R2

α′ , (2.91)

where gs denotes the string coupling constant and T the string tension. We note
that only the combination R2/α′ appears as a parameter of the string theory. In
supergravity calculations it can be convenient to set the radii of AdS5 and S5 to one
and we will also do this below.

In its strongest form, the conjecture is valid for the full parameter region of both
theories, but also the restriction to limiting cases is interesting to study. Considering
the planar limit implies gs → 0, such that the splitting and joining of strings is
suppressed and we are hence considering free string theory. In this case, a small
gauge theory coupling constant λ corresponds to a strongly curved background in
string units and a weakly curved background corresponds to a strongly coupled
gauge theory. This makes the conjecture both hard to test and powerful, since it
allows insights into strongly coupled gauge theory.

The precise relations between the different objects of the string and gauge theory
form the so-called AdS/CFT dictionary; for these relations the reader is referred to
the above-mentioned reviews. Below, we only discuss the dual description of the
Maldacena–Wilson loop, which we introduce in the next section.

2.4 The Maldacena–Wilson Loop

We are now in a position to introduce the Maldacena–Wilson loop operator inN = 4
supersymmetric Yang–Mills theory. We begin by introducing Wilson loops in Yang-
Mills theories and obtain theMaldacena–Wilson loop from the dimensional reduction
of light-likeWilson loops in the ten-dimensionalN = 1 supersymmetric Yang–Mills
theory. As an example for a test of the AdS/CFT correspondence, we discuss the
Maldacena–Wilson loop over the circle, which has been exactly calculated on the
gauge theory side.
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2.4.1 Wilson Loops in Gauge Theories

The Wilson loop was first introduced by Kenneth Wilson in Ref. [50] in the study of
quark confinement using gauge theory on a lattice. Here, we introduce the Wilson
loop from general considerations of gauge invariance following Ref. [51]. Consider
for example a quark fieldψ in the fundamental representation evaluated on two points
x, y ∈ R

(1,3). We cannot compare the fields directly, since the difference does not
transform appropriately under gauge transformations

ψ(x) �→ U (x)ψ(x) , ψ(y) �→ U (y)ψ(y) . (2.92)

This problem is similar to the comparison of tangent vectors at different points on a
manifold and requires to introduce a parallel transport or Wilson line in the context
of Yang–Mills theories. We consider a curve γ, denoted also by x(σ), from y to x
and introduce theWilson line Vγ from the requirement that it be covariantly constant
along γ, i.e. it satisfies ẋμDμVγ = 0 or more explicitly

∂σ Vγ(x(σ), y) = i ẋμ(σ)Aμ(x(σ)) Vγ(x(σ), y) . (2.93)

Along with the initial condition Vγ(y, y) = 1, the above differential equation com-
pletely determines V due to the uniqueness theorem for ordinary differential equa-
tions. Under a gauge transformation Aμ �→ A′

μ = U
(
Aμ + i∂μ

)
U−1, the Wilson

line transforms as

Vγ(x, y) �→ V ′
γ(x, y) = U (x)Vγ(x, y)U

−1(y) . (2.94)

In order to prove this behavior, we only need to show that V ′
γ satisfies the gauge

transformed version of the definition (2.93), which follows from a short calculation:

∂σV
′
γ(x(σ), y) = U (x(σ))

[
i ẋμ(σ)Aμ(x(σ)) − ẋμ(σ)∂μ

]
U−1(x(σ)) V ′

γ(x(σ), y)

= i ẋμ(σ)A′
μ(x(σ)) V ′

γ(x(σ), y) .

Noticing that V ′
γ(y, y) = 1 concludes the proof. With the gauge transformation of

the Wilson line established, we note that we can now compare the fields ψ(x) and
Vγ(x, y)ψ(y), since they transform in the same way under gauge transformations.
Moreover, if we have e.g. scalar fields � in the adjoint representation as in N =
4 supersymmetric Yang–Mills theory, we can construct non-local gauge invariant
operators such as

tr
(
�(x)Vγ(x, y)�(y)V−1

γ (y, x)
)
.

We can also construct a non-local gauge invariant operator from the Wilson line
itself. For a closed curve γ, we note that the Wilson line transforms as
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Vγ(x, x) �→ U (x)Vγ(x, x)U (x)−1 , (2.95)

and we define the gauge-invariant Wilson loop as

W(γ) = 1

N
tr

(
Vγ(x, x)

)
. (2.96)

The normalization factor N−1 ensures that in a U(N ) or SU(N ) gauge theory, the
trivial loop over a constant curve gives W(γ) = 1. We note that the gauge trans-
formation behavior (2.95) allows to construct other gauge invariants than the trace,
since all eigenvalues of Vγ(x, x) are invariant. Considering other combinations of
eigenvalues amounts to studying the Wilson loop in different representations of the
gauge group. Here, we focus on the Wilson loop in the fundamental representation,
where the gauge field, while it transforms in the adjoint representation, takes values
in the fundamental representation.

A better-known expression for the Wilson loop is obtained by rewriting the defin-
ing equation (2.93) as an integral equation,

Vγ(x(σ), y) = 1 + i

σ∫

0

dσ1 ẋ
μ
1 Aμ(x1)Vγ(x1, y) , (2.97)

where we have abbreviated x(σ1) = x1. Plugging this recursion into itself, we obtain
the formal solution

Vγ(x(σ), y) = ←−
Pexp

(
i
∫ σ

0
dσ1 ẋ

μ
1 Aμ(x1)

)
, (2.98)

where the arrow indicates that in the expansion of the path-ordered exponential,
greater values of σ are ordered to the left. For the Wilson loop we thus have the
expression

W(γ) = 1

N
tr

←−
Pexp

(
i
∫

γ

dσ ẋμAμ(x)

)
, (2.99)

which also allows us to carry out perturbative calculations.
Physically, we may interpret the Wilson loop to describe the insertion of heavy

external quarks into the theory. In order to motivate this interpretation, we consider
the path integral in a U(1) gauge theory with a source term specified by

Jμ(y) =
∫

dσ ẋμ(σ) δ(4)(y − x(σ)) . (2.100)

The partition function including the source term is then given by
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Z [J ] =
∫

[dA] exp

(
i S + i

∫
d4x JμAμ

)
, (2.101)

and we find that

〈W(γ)〉 = Z [J ]
Z [0] . (2.102)

Here, γ denotes the contour appearing in the prescription for the current Jμ. A
particularly interesting result is obtained for a rectangular contour γR,T with side
length T in the time direction and R � T in some spatial direction, for which one
finds

〈
W(γR,T )

〉 � e−T V (R) , (2.103)

where T is considered to be asymptotically large. The above conclusion is based on
the fact that the path integral for large Euclidean times is dominated by the ground
state energy and that for R � T we may neglect the spatial parts of the loop, such
that we are considering a quark-antiquark pair separated by a distance R. We note
that, while we have only motivated the above result for a U(1) gauge theory, it
also holds in non-Abelian Yang–Mills theory, cf. e.g. Ref. [52] for more details. The
calculation of the expectation value of the Wilson loop is thus crucial in the study
of confinement, which is the problem Wilson originally addressed in Ref. [50]. We
note that in a conformal field theory scale invariance requires that the expectation
value is of the form e−T/R , such that we obtain the Coulomb potential.

The perturbative calculation of the expectation value of the Wilson loop leads
to divergences which require renormalization. These divergences were noted first
in Ref. [53], the renormalization properties were established in Refs. [54, 55]. We
discuss the divergences for the one-loop approximation of the expectation value,
which is given by

〈W(γ)〉 = 1 − g2(N 2 − 1)

16π2N

L∫

0

dσ1 dσ2
ẋ1 ẋ2

(x1 − x2)2
+ O(g4) , (2.104)

Here we have taken the gauge group to be given by SU(N ) and have plugged in the
gauge field propagator in Feynman gauge,

〈
Aa

μ(x1)A
b
ν(x2)

〉 = g2

4π2

ημν δab

(x1 − x2)2
(2.105)

In the following, wewill demand that the parametrization satisfy ẋ2 = 1 andwe have
indicated the use of such a parametrization above by using the integration boundaries
0 and L . We employ a cut-off regularization to discuss the divergence of the one-loop
contribution and find
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L∫

0

ds

L−s∫

−s

dt
ẋ(s)ẋ(s + t)

[x(s + t) − x(s)]2 + a2
=

L∫

0

ds

L−s∫

−s

dt
1

t2 + a2
+ (finite)

= πL

a
− 2 ln

(
L

a

)
+ (finite) . (2.106)

Here, we have discussed the divergences coming from the region σ1 � σ2 of the
contour integration. In this limit, one can treat the contour as a straight line, since
the corrections due to the curvature are second order and hence do not affect the
divergences. This argument, however, ignores the region σ1 � 0, σ1 � L , in which
the integrand diverges as well due to the periodicity of the curve. A short calculation
reveals that the contribution from this region cancels the above log-divergence such
that only the linear divergence remains.

This linear divergence appears in all orders of perturbation theory and G(γ) =
〈W(γ)〉 can be renormalized as

G(γ) = e−cL/a Gren(γ) , (2.107)

which we may interpret as a mass renormalization of the test particle prescribed by
the Wilson loop. It was further noted in Ref. [53] that the Wilson loop has additional
divergences for cusped contours. In order to discuss these divergences, we switch
to dimensional regularization where the above linear divergence is absent. The cusp
divergence depends only on the intersection angle at the cusp and we can hence
compute the divergence for the intersection of two straight lines intersecting at a
hyperbolic angle ρ. The relevant integral for the one-loop contribution is given by5

L∫

0

dσ1 dσ2 cosh(ρ)
[
σ2
1 + σ2

2 + 2σ1σ2 cosh(ρ)
]1−ε

=
L∫

0

d�

�1−2ε

1∫

0

dz cosh(ρ)

z2 + z̄2 + 2zz̄ cosh(ρ)
+ O(ε0)

= ρ coth(ρ)

2ε
+ O(ε0) .

Here, we have used the substitution σ1 = �z, σ2 = �z̄ = �(1 − z) in order to capture
the divergence in the scale integral over �. The cusp divergence is renormalized
multiplicatively through a ρ-dependent Z -factor

GR(γ) = Z(ρ)G(γ) , (2.108)

where we have omitted the dependence on the regulator which the quantities appear-
ing on the right-hand side have. The renormalization prescription for the Wilson
loop was completed in Ref. [55], where they additionally discussed the case of self-

5In dimensional regularization, the momentum space propagators are unaltered, but the Fourier
transformation is carried out in D = 4 − 2ε dimensions. This leads to the alteration of the two-
point function noted here, cf. e.g. Ref. [56].
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intersecting Wilson loops. These are still renormalized multiplicatively, but now the
Z -factor mixes between correlators of Wilson loops taken over the same contour
with different orderings around the intersection point.

The anomalous dimensions associated to the cusp and cross divergences are known
as the cusp and cross or soft anomalous dimension and are of phenomenological rele-
vance in the description of infrared divergences of scattering amplitudes. Intuitively,
we can understand the connection as follows: If an outgoing quark emits a soft gluon
of zero momentum, it will not recoil and follow the straight-line trajectory that also
describes the associated Wilson line which accounts for the acquired phase factor.
The connection between soft singularities of scattering amplitudes andWilson loops
was established soon after the study ofWilson loops was initiated [57, 58] and is still
widely applied today, see e.g. Ref. [59] for a recent review or [60] for a pedagogical
introduction. We note that the cusp anomalous dimension has been calculated to two
loops [61] and more recently to three loops [62] in QCD. InN = 4 supersymmetric
Yang–Mils theory, it is known up to four loops [63–65].

2.4.2 The Maldacena–Wilson Loop

Let us now turn to N = 4 supersymmetric Yang–Mills theory, where one considers
a generalization of the Wilson loop known as the Maldacena–Wilson loop. Malda-
cena’s original motivation was based on considering (N + 1) five-branes and sep-
arating one of them from the others and thus studying the Higgs mechanism for
the symmetry breaking U(N + 1) → U(N ) × U(1). For this reasoning, the reader
is referred to the original papers [66, 67] or the textbook [48]. Here, we motivate the
Maldacena–Wilson loop by referring to the dimensional reduction and considerations
of supersymmetry.

We begin by considering the Wilson loop in ten-dimensional N = 1 supersym-
metric Yang–Mills theory which is given by

W(γ) = 1

N
tr

←−
Pexp

(
i
∫

γ

Am dxm
)

. (2.109)

We note now that if the ten-dimensional curve γ is light-like, the linear divergence
of the Wilson loop discussed in Eq. (2.106) is absent since the length of the curve
vanishes. Choosing a light-like contour also has implications for supersymmetry.
Consider the supersymmetry variation of the Wilson loop, which we find using the
field variation (2.73) to be given by

δξW(γ) = − 1

N
tr

←−
P

[∫
dσ

(�� ẋm�m ξ
)
exp

(
i
∫

Am dxm
)]

. (2.110)

The light-likeness of ẋm implies that the matrix coupling the supersymmetry param-
eter ξ to the fermionic fields squares to zero,
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(
ẋm�m

)2 = 1
2 ẋ

m ẋn {�m, �n} = 0 , (2.111)

such that its rank is at most half of its dimension. Hence, if we allow the supersym-
metry variation to be local for a moment, we find at least eight linearly independent
supersymmetry parameters ξ(σ) for which the supersymmetry variation vanishes.
The property of being locally supersymmetric carries over to the counterpart of the
light-likeWilson loop in the dimensionally reduced theory, which is the Maldacena–
Wilson loop

W (γ) = 1

N
tr

←−
Pexp

(
i
∫

γ

(
Aμ dx

μ + i �I |ẋ |nI
))

. (2.112)

Here, nI is a six-dimensional unit vector, which can in general depend on the curve
parameter σ. This ensures that the constraint of light-like tangent vectors in ten
dimensions is satisfied,

ẋm(σ) = (
ẋμ(σ), i n I (σ)|ẋ(σ)|) ⇒ ẋm ẋm = ẋ2 − |ẋ |2 = 0 . (2.113)

Note that here we have defined

|ẋ | =
{√

ẋ2 if ẋ2 ≥ 0 ,

i
√|ẋ2| if ẋ2 < 0 ,

(2.114)

such that the Maldacena–Wilson loop is only a phase if ẋμ is time-like. For a space-
like tangent vector, we cannot obtain a light-like vector in ten dimensions by adding
space directions and we are thus forced to consider the additional components imag-
inary.

As pointed out above, the Maldacena–Wilson loop inherits the local supersym-
metry property6 of the ten-dimensional Wilson loop. Of course, the action is not
invariant under local supersymmetry variations and supersymmetry only has con-
sequences for the expectation value of the Maldacena–Wilson loop, if we are able
to find constant supersymmetry parameters for which the supersymmetry variation
vanishes. The simplest case in which this is possible, is the straight line for which the
Maldacena–Wilson loop is a 1/2 BPS object. This implies that its expectation value
is finite and does not receive quantum corrections,

W 1 . (2.115)

We can apply this result to convince ourselves that the linear divergences of Wilson
loops are indeed absent for smooth Maldacena–Wilson loops. These divergences
arise from the limit where all integration points along the Wilson line are close to

6We note that if ẋm has imaginary components, it is not possible to find solutions to ẋm�m ξ = 0,
which satisfy the Majorana condition for spinors in ten dimensions. For more details, the reader is
referred to Ref. [27].
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each other. In this limit, the curvature of the considered curve is not relevant and the
finiteness hence carries over to generic smooth curves.

It was noted in Ref. [68] that also for other curves than the straight line, some of the
supersymmetry can be preserved globally, leading to 1/4, 1/8 or 1/16 BPS operators,
depending on the amount of supersymmetry which can be preserved. The construc-
tion involves a coupling between the S5-vectors nI (σ) and the contour xμ(σ). Further
classes of contours were found in Ref. [69] by considering also superconformal vari-
ations of the Maldacena–Wilson loop. A classification of loops, for which at least
one supersymmetry can be preserved, was obtained in [70, 71].

For the expectation value of the Maldacena–Wilson loop, we find

〈W (γ〉 = 1 − λ
(
1 − N−2

)

16π2

∫
dσ1 dσ2

ẋ1 ẋ2 − n1n2 |ẋ1||ẋ2|
(x1 − x2)2

+ O(λ2) , (2.116)

Here, we have used the result

〈
�a

I (x1)�b
J (x2)

〉 = g2

4π2

δI J δab

(x1 − x2)2
, (2.117)

for the scalar propagator in order to find the one-loop contribution to the above
expectation value. We can observe the finiteness of the expectation value for the one-
loop contribution by considering the integrand in the limit σ2 → σ1. Since n2 = 1
implies that n · ṅ = 0, we find that the denominator is of order (σ2 − σ1)

2, such that
the integrand is indeed finite in this limit.

2.4.3 The Strong-Coupling Description

The strong-coupling description of the Maldacena–Wilson loop was obtained in
Ref. [66]. On the string theory side of the correspondence, the Maldacena–Wilson
loop is described by the string partition function, with the string configuration
bounded by the Wilson loop contour on the conformal boundary of AdS5. In the
limit of large λ, the partition function is dominated by the classical action and the
AdS/CFT prescription for the Maldacena–Wilson loop at strong coupling is given
by

〈W (γ)〉 λ�1= exp
(
−

√
λ

2π Aren(γ)
)

. (2.118)

Here, Aren(γ) denotes the area of the minimal surface ending on the contour γ, which
is situated at the conformal boundary. The boundary value problem is simplest to
describe in Poincaré coordinates (Xμ, y), for which we recall the metric
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ds2 = dXμ dXμ + dy dy

y2
, (2.119)

and note that the conformal boundary corresponds to y = 0. For suitably chosen
coordinates τ and σ, we thus impose the boundary conditions

Xμ(τ = 0,σ) = xμ(σ) , y(τ = 0,σ) = 0 . (2.120)

The area of the minimal surface is obtained from the area functional or Nambu–Goto
action

A =
∫

dτ dσ
√
det

(
�i j

)
, (2.121)

where �i j = y−2
(
∂i Xμ ∂ j Xμ + ∂i y ∂ j y

)
is the induced metric on the surface. The

minimal surface described by the above boundary conditions is divergent due to
the divergence of the AdS-metric. We regulate the area of the minimal surface by
introducing a cut-off ε for the y-direction, i.e. we integrate only over the region
y ≥ ε. Since theminimal surface leaves the conformal boundary perpendicularly due
to the divergence of the AdS-metric, we can identify the divergence to be given by
L(γ)/ε andwe note that theAdS/CFT prescription (2.118) contains the renormalized
minimal area

Aren(γ) = lim
ε→0

{
A(γ)

∣∣
y≥ε

− L(γ)

ε

}
. (2.122)

Let us point out again that theMaldacena–Wilson loop over a smooth contour is finite
and does not require renormalization. The above renormalization of the area of the
minimal surface stems from considering the Legendre transformation with respect
to the loop variables coupling to the scalar fields, see Ref. [72] for more details.

The above description is restricted to the case of constant nI . For the general case
of nI (σ) describing a closed curve on S5, the strong-coupling description contains a
minimal surface inAdS5 × S5,which is bounded by xμ(σ) in the conformal boundary
of AdS5 and nI (σ) in S5.

2.4.4 The Circular Maldacena–Wilson Loop

As an example, we now discuss the Maldacena–Wilson loop over the circle. This
contour is of particular interest, since the expectation value of theMaldacena–Wilson
loop can be calculated exactly on the gauge theory side,which allows to comparewith
the AdS/CFT prediction at strong coupling. The circularMaldacena–Wilson loop is a
1/2 BPS operator. The supersymmetry variations discussed above are not sufficient to
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establish this fact, rather one also needs to include special superconformal variations
to find linear combinations which leave the operator invariant [69].

The minimal surface for the circularWilson loop in Euclidean space was obtained
soon after the AdS/CFT proposal in Ref. [73]. Assuming that the sections of themini-
mal surface at constant y are still circular, one may use the following parametrization
of the minimal surface:

Xμ(r,σ) = (r cosσ, r sin σ) , y = y(r) . (2.123)

The area of the surface is then given by

A =
∫

dr dσ
r
√
1 + y′(r)2

y(r)2
, (2.124)

such that we have the equations of motion

∂r

(
r y′(r)

y(r)2
√
1 + y′(r)2

)

+ 2r
√
1 + y′(r)2

y(r)3
= 0 . (2.125)

Due to the large amount of symmetry and the particular parametrization used above,
the equations of motion have reduced to an ordinary differential equation for the
function y(r). For the circle of radius 1, we note the boundary condition y(1) = 0.
There is, however, a simpler way to find the minimal surface for the circle than to
solve the above equation, which was used in Ref. [73]. Note that the inversion map
on R2,

I (x)μ = xμ

x2
,

maps the circle to a straight line and vice versa. Specifically,we consider the boundary
curves

x(σ) = (cosσ, sin σ + 1) , I (x(σ)) =
(

cosσ

2(1 + sin σ)
,
1

2

)
.

The inversion map can be extended to the AdS-isometry

IAdS(X, y) =
(

Xμ

X2 + y2
,

y

X2 + y2

)
, (2.126)

which can be used to map the (formal) minimal surface attached to the straight line
to the one attached to the circle. Writing the minimal surface for the straight-line7 as

7It is straight-forward to check that this intuitive solution indeed solves the equations of motion.
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Xμ(τ ,σ) = (
σ, 1

2

)
, y(τ ,σ) = τ , (2.127)

we obtain the surface

Xμ(τ ,σ) =
(

4σ

1 + 4(σ2 + τ 2)
,
1 − 4(σ2 + τ 2)

1 + 4(σ2 + τ 2)

)
,

y(τ ,σ) = 4τ

1 + 4(σ2 + τ 2)
. (2.128)

Here, we have employed a translation by (0,−1) in addition to the inversion such
that the circle is centered around the origin. The parametrization obtained above is
not well suited for the further study of this minimal surface. We note that the surface
described by Eq. (2.128) satisfies the equation

X2 + y2 = 1 . (2.129)

For the parametrization (2.123) employed at the beginning of our discussion, we thus
find

y(r) =
√
1 − r2 , (2.130)

which indeed solves the equations of motion (2.125). An often-used parametrization
is given by

X1(τ ,σ) = cosσ

cosh τ
, X2(τ ,σ) = sin σ

cosh τ
, y(τ ,σ) = tanh τ . (2.131)

For this parametrization, the induced metric is conformal to the flat metric such that
it solves the equations of motion in conformal gauge, if one chooses to work with a
Polyakov rather than Nambu–Goto action.

In order to calculate the area of the minimal surface, we introduce a cut-off at
y = ε, which corresponds to r = √

1 − ε2. Then, we get

Aren lim
ε 0

2π

0

dσ

1 ε2

0

r dr

1 r2 3 2

2π
ε

2π . (2.132)

We have thus found that the circular Maldacena–Wilson loop has the following
asymptotic behavior at strong coupling:

W
λ 1

e λ. (2.133)

Remarkably, the expectation value of the circular Maldacena–Wilson loop has been
calculated exactly on the gauge theory side, beginning with the calculation of
Ref. [56], which we sketch below.
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(a) Double-Propagator (b) Self-Energy (c) Three-Vertex

Fig. 2.2 Examples of the double-propagator, self-energy and three-vertex diagrams appearing in
the two-loop calculation of the expectation value of the Maldacena–Wilson loop

Let us first consider the one-loop order of the expectation value (2.116). For the
circle parametrized by x(σ) = (cosσ, sin σ) and constant nI , we find

ẋ1 ẋ2 − |ẋ1||ẋ2|
(x1 − x2)2

= cosσ1 cosσ2 + sin σ1 sin σ2 − 1

2 − 2(cosσ1 cosσ2 + sin σ1 sin σ2)
= −1

2
.

This finding renders the integral appearing in the calculation of the one-loop coeffi-
cient trivial and we obtain (in the planar limit)

W 1
λ

8
O λ2 . (2.134)

At the two-loop order, the calculation becomes more intricate, since in addition to
the diagrams consisting of two gluon or scalar propagators, diagrams with three-
vertices and the self-energy correction to the propagators appear, see Fig. 2.2. These
diagrams are divergent and require regularization. The regularization scheme used in
Ref. [56] is known as the dimensional reduction scheme. It is a version of dimensional
regularization which is particularly well-suited for supersymmetric theories. Here,
N = 4 supersymmetric Yang–Mills theory is viewed as the theory obtained from
dimensionally reducing ten-dimensionalN = 1 supersymmetric Yang–Mills theory
to D dimensions. The regularized theory hence has a D-component vector field Aa

μ as
well as 10 − D scalar fields�a

I , see Ref. [74] for more details. The expectation value
of the Maldacena–Wilson loop is finite for smooth contours and indeed one observes
that the divergences of the self-energy and three-vertex diagrams cancel each other for
generic (smooth) contours. The calculation in Ref. [56] showed that these diagrams
cancel each other exactly for the circular Wilson loop in D = 4 dimensions.

The authors of Ref. [56] then conjectured that these cancellations occur at all
loop orders. This conjecture can be interpreted by again referring to the conformal
mapping of the straight line to the circle. For the straight line the gluon and scalar
propagators endingon the line cancel eachother individually since ẋ1 ‖ ẋ2.Moreover,
since the expectation value is identically 1, all contributions containing interaction



2.4 The Maldacena–Wilson Loop 43

vertices cancel each other at any given loop order. The transformation mapping the
straight line to the circle is anomalous, since it maps one point on the circle to
infinity. Indeed, the gluon and scalar propagators do no longer cancel each other for
the circle as we have seen above. The conjecture then states that the cancellations
between the diagrams containing interaction vertices do carry over to the circular
Maldacena–Wilson loop.

Given this conjecture, the expectation value of the circular Maldacena–Wilson
loop can be calculated from diagrams containing propagators ending on the circle,
such as diagram (a) in Fig. 2.2. Moreover, if we consider the planar theory, the
propagators do not cross each other. In order to calculate these diagrams, it is sensible
to combine the gluon and scalar contributions as in the one-loop contribution, such
that each propagator contributes a factor of

− ẋ1 ẋ2 − |ẋ1||ẋ2|
(x1 − x2)2

= 1

2
.

The color factors are obtained by applying the identity 2 T aT a = N 1 and we note
that the ordered 2n-fold integral over the interval [0, 2π] contributes a factor of

(2π)2n

(2n)! .

Each individual diagram at the n-th loop order thus contributes the factor

1

2n
(2π)2n

(2n)!
(

g2

4π2

)n (
N

2

)n

= λn

4n (2n)! . (2.135)

We need hence only count all possible rainbow-like diagrams consisting of n propa-
gators, which are not crossing each other. Any diagram of this type can be drawn in
the following form:

Here, the grey blob denotes a generic rainbow-like diagram containing n propagators.
It is then easy to see that the number An of the rainbow-like diagrams satisfies the
recursion relation

An+1 =
n∑

k=0

An−k Ak , A0 = 1 . (2.136)

This recursion relation may be solved by finding a generating function
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f (z) =
∞∑

n=0

An z
n . (2.137)

In terms of this generating function, the recursion relation (2.136) translates to the
functional equation

f (z)2 = f (z) − 1

z
, f (0) = 1 , (2.138)

which is solved by

f (z) = 1 − √
1 − 4z

2z
=

∞∑

n=0

(2n)!
(n + 1)! n! z

n . (2.139)

We have hence found the number of rainbow-like diagrams containing n propagators
to be given by

An = (2n)!
(n + 1)! n! . (2.140)

Itwas noted inRef. [56] that An can also be calculated fromamatrixmodel introduced
in Ref. [75]. Combining the above finding with the factor (2.135) contributed by each
individual diagram, we find (assuming the conjecture of Ref. [56] holds true)

W
n 0

λn

4n n 1 !n!
2
λ
I1 λ . (2.141)

Here, I1 is the modified or hyperbolic Bessel function Iν of the first kind for the value
ν = 1, cf. e.g. Ref. [76] for more details on this function. The asymptotic expansion
for large λ is given by

W
λ 1 2

π

e λ

λ3 4 , (2.142)

which agrees with the AdS/CFT prediction (2.133) within the limits of its accuracy.
The calculation of the circular Maldacena–Wilson loop was extended by Drukker
and Gross [77] to include all non-planar corrections. They studied the anomaly
arising from the singular mapping of the straight line to the circle also relying on the
conjecture that all diagrams containing interaction vertices cancel against each other.
The conjecture was later proven by Pestun [78], who used localization techniques
to reduce the calculation of the circular Maldacena–Wilson loop to a matrix model
calculation.
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At the strong coupling side, the one-loop string correction to the circular Wil-
son loop was also considered [79, 80], but a mismatch to the localization result
was observed, cf. e.g. Ref. [81] for more details. In this light, it is interesting to
consider the ratio between the circular 1/2 BPS Maldacena–Wilson loop and a 1/4
BPS Maldacena–Wilson loop known as the latitude Wilson loop, for which some of
the potential ambiguities of the string one-loop calculation drop out. The mismatch
between the localization result and the string correction observed there [82, 83] was
recently resolved in Ref. [84].

2.4.5 The Duality to Scattering Amplitudes

In the description of Wilson loops in generic Yang–Mills theories, we have touched
upon the relation between the ultraviolet (cusp) divergences of Wilson loops and the
infrared divergences of scattering amplitudes. InN = 4 supersymmetric Yang–Mills
theory, the connection between scattering amplitudes and Wilson loops goes even
further, cf. the reviews [85, 86] on which the below discussion is mainly based.
The first signs for the conjectured duality between these observables were found by
Alday and Maldacena in Ref. [87], who found that gluon scattering amplitudes at
strong coupling are described by the area of certain minimal surfaces. Concretely,
the boundary curves for these minimal surfaces are given by polygons with light-like
edges, where the cusp points are related to the momenta of the gluons by

xi+1 − xi = pi . (2.143)

The strong-coupling description of the scattering amplitudes is thus the same as for
theWilson loop over the polygon with cusp points xi . The calculation of the minimal
surface in the four-cusp case lead to a result in agreement with the BDS-ansatz for the
four-gluon amplitude, which is a conjecture for color-ordered, maximally helicity
violating n-gluon amplitudes that was put forward in Ref. [88] based on a 3-loop
calculation.

Let us shortly explain the nature of the duality in more detail. We are considering
maximally helicity violating (MHV) gluon amplitudes in the planar limit of N = 4
supersymmetric Yang–Mills theory, where one considers color-ordered amplitudes,
see Refs. [89, 90] for an introduction. For MHV amplitudes, two of the gluons have
one helicity while all other gluons have the opposite helicity. In this case, the same
function of the helicity variables appears at all loop orders, and the amplitude can be
written as

An = Atree
n Mn , (2.144)

where Mn is a function only of the momentum invariants (pi + p j )
2 and the helicity

information is contained in the tree-level amplitude Atree
n . The conjectured duality
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Fig. 2.3 Graphical representation of the duality between Wilson loops and scattering amplitudes

states [91] that the functionMn is related8 to the expectation value 〈Wn〉 of theWilson
loop over the associated polygon (Fig. 2.3) by

〈Wn〉 = Mn + d . (2.145)

Here, d is a constant which does not depend on the kinematical information. This
conjecture was tested further in Refs. [92, 93], where it was found to hold true,
while both the Wilson loop and the scattering amplitude begin to deviate from the
BDS-ansatz starting from six gluons and two loops.

The appearance of these deviations can be understood from symmetry consid-
erations, which one may motivate from the above duality. From the viewpoint of
the scattering amplitudes, the conformal symmetry of the Wilson loop appears as a
dual conformal symmetry in the dual variables xi ; this symmetry had indeed been
obtained in Ref. [94, 95]. The dual conformal symmetry is very restrictive in the
case of four- and five-point scattering amplitudes, for which one cannot construct
conformally invariant combinations of the dual variables xi . Starting from six points
however, one may consider the conformally invariant cross-ratios

ui jkl = (xi − x j )
2(xk − xl)2

(xi − xk)2(x j − xl)2
,

and both Wilson loop and scattering amplitude contain a functional dependence on
the respective cross-ratios, which the BDS ansatz does not account for.

The amplitudes of N = 4 supersymmetric Yang–Mills theory can be organized
conveniently by introducing an auxiliary superspace containing the Graßmann odd
variables ηA

i for each external leg of the amplitude, see Ref. [90] for more details. The
original amplitudes can then be obtained as the coefficients in the η-expansion of the
superamplitudes. It was noted in Ref. [96] that the dual conformal symmetry extends

8Since the duality relates ultraviolet and infrared divergent quantities, both the regularization param-
eters εUV and εIR and the renormalization constants μUV and μIR have to be related to each other.
This can in general be done in such a way that the divergent pieces of the amplitude and the Wilson
loop match, cf. e.g. Ref. [86] for a more detailed explanation.
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to a dual superconformal symmetry of the color-ordered superamplitudes, see also the
review [97]. The combination of the dualwith the ordinary superconformal symmetry
yields a Yangian symmetry of tree-level superamplitudes, which was observed in
Ref. [21].

Attempts have been made to extend the duality between Wilson loops and MHV
amplitudes to a duality between superamplitudes and corresponding supersymmet-
ric extensions of light-like Wilson loops [98, 99]. However, at the one-loop order
the proposed correspondence seems to fail due to singularities appearing for the
supersymmetric extensions of the light-like Wilson loop, cf. Refs. [100–102].

Still, the combination of theYangian symmetry found for the scattering amplitudes
with the conjectured dualities hints that a Yangian symmetry could be present for
(Maldacena–)Wilson loops or possibly supersymmetric extensions of these. Indeed it
was found that an extension of smoothMaldacena–Wilson loops into smoothWilson
loops in superspace possesses a Yangian symmetry [9, 103, 104]. We will discuss
the strong-coupling counterpart of this object as well as its symmetries in Chap. 7.
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Chapter 3
Symmetric Space Models

We have seen above that the Maldacena–Wilson loop is described by the string
action in AdS5 × S5 at strong coupling and it thus inherits the symmetries of the
underlying string theory, which is known to be classically integrable. One can employ
the classical integrability of the theory to derive symmetries of the minimal surface
problem; this approach was applied in Ref. [1] to derive Yangian Ward identities for
the Maldacena–Wilson loop at strong coupling.

Apart from finding strong-coupling symmetries, we are interested in transferring
these symmetries from strong coupling to weak or even arbitrary coupling. Since
it is a priori unclear for which symmetries this is possible and what formulation is
suitable for it, we discuss different approaches to construct the symmetries of string
theory in AdS5. In fact, our discussion is not limited to Anti-de Sitter spaces but
extends to a class of spaces known as symmetric spaces, which can be described by a
specific class of coset spaces. The group-theoretic approach makes the integrability
of the theory and the associated symmetries particularly transparent without needing
to refer to the specific underlying space.

The explicit application of the symmetries found for these models to minimal
surfaces in AdS5 is discussed in Chap.4. In the present chapter, the fact that the
focus lies on minimal surfaces rather than closed strings appears in the assumption
that the surface is simply connected, which is crucial for the discussion of conserved
charges.We discuss the differences to the theory of closed strings or two-dimensional
field theory at various points.

The present chapter consists partly of an extensive review of the integrability of
symmetric space models and partly of the original results obtained in Refs. [2, 3],
which highlight the role of themaster symmetry in the construction of the symmetries.
We begin by discussing the geometric aspects of symmetric spaces in Sect. 3.1 and
go on to discuss the string action in a symmetric space as well as its integrability in
Sects. 3.2 and 3.3. We then turn to the discussion of the master symmetry in Sect. 3.4.
This symmetry was discussed in Refs. [4, 5] as the spectral parameter deformation
of minimal surfaces in Euclidean AdS3 and much earlier in Ref. [6] in the context
of two-dimensional field theories. In the latter reference it was applied to derive
an infinite set of conserved charges, thus establishing the model’s integrability. We
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initially focus on the deformations of minimal surfaces and establish the properties
of these transformations. We then go on to show in Sect. 3.6 that in addition to
the construction of conserved charges, one can also apply the master symmetry to
construct one-parameter families of symmetry variations, justifying its name. The
algebra relations of the symmetry variations so obtained aswell as thePoisson algebra
of the conserved charges are established in Sect. 3.7.

3.1 Symmetric Spaces

A general symmetric space M can be described as a homogeneous or coset space
G/Hwith appropriate Lie groups G andH. The condition of being a symmetric space
is then entailed in an algebraic restriction which the Lie algebras g and h obey. This
algebraic approach to the study of symmetric spaces goes back to the work of Élie
Cartan [7, 8], who applied it to give a classification of Riemannian symmetric spaces.
It provides an extremely efficient description of symmetric spaces which is widely
applied in the literature. However, in order to explain what is symmetric about sym-
metric spaces, we will initially take a geometric viewpoint. Here, we are not aiming
for a complete and rigorous mathematical introduction to the subject of symmetric
spaces such that most proofs are omitted below. For a complete mathematical intro-
duction, the reader is referred to Ref. [9] and in particular Ref. [10, chapters 8–11],
on which the account given below is based.

In a rough sense, a symmetric space is a space for which the set of isometries
is large enough to make the space regular. To reach a more precise description,
let us first consider the example of n-dimensional Euclidean space Rn . Apart from
rotations and translations, the point reflections Ra with respect to a certain fixed point
a ∈ R

n are isometries. The set of point reflections Ra : x �→ 2a − x generates all
translations, since the concatenation of two point reflections is given by Ra ◦ Rb :
x �→ x + 2(a − b). The generalization of the point reflections to manifolds leads us
to the concept of a symmetric space.

Definition 3.1 We call a smooth, connected semi-Riemannian manifold M a sym-
metric space if for each p ∈ M there is an involutive isometry ξp (i.e. an isometry
satisfying ξ2p = idM) with isolated fixed point p. The isometry ξp is called the global
symmetry of M at p.

Since ξp is an involution, it follows that (dξp)p : TpM → TpM is also an involu-
tion and hence it must have eigenvalues±1. Remembering that a geodesic is entirely
specified by its tangent vector in a given point, we realize that if (dξp)p has an eigen-
value +1, then the geodesic through p which is tangent to the respective eigenvector
ismapped to itself by ξp, in contradiction to p being an isolated fixed point. Hencewe
have (dξp)p = −idTpM, such that ξp reverses all geodesics passing through p. In this
way, the global symmetries provide a natural generalization of the point reflections
of Euclidean space.
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As an example, we consider the three-dimensional sphere S3, which we describe
in embedding coordinates as

S3 = {(X1, X2, X3, X4) ∈ R
4 : X2

1 + X2
2 + X2

3 + X2
4 = 1}.

The global symmetry at the pole N = (0, 0, 0, 1) is given by the map

ξN (X1, X2, X3, X4) = (−X1,−X2,−X3, X4) , (3.1)

which is clearly an involution on S3 and has isolated fixed points N and −N .
Spaces of constant curvature such as the example above are symmetric spaces.

While the converse is not true in general, the condition of being a symmetric space
implies that the covariant derivative of the curvature tensor vanishes,∇R ≡ 0, where
∇ denotes the Levi–Civita connection onM.The vanishing of the covariant derivative
of the curvature tensor in turn only implies that M is locally symmetric, which means
that for each p ∈ M there is a neighbourhood Up of p on which a map with the
properties of ξp can be defined.

With the geometric definition of a symmetric space discussed, we turn to the
representation of a symmetric space as a coset space G/H. In order for M to be a
homogeneous space, the action of the set of isometries of M must be transitive. We
can argue that this is the case similarly to the example of Euclidean space, where
we found that the set of point reflections generates translations. The appropriate
generalization of translations to manifolds is given in the following definition.

Definition 3.2 An isometry ξ : M → M is called a transvection along a geodesic γ,
provided that

(i) ξ is a translation along γ, that is ξ(γ(s)) = γ(s + c) for all s ∈ R and some
c ∈ R,

(ii) dξ gives parallel translation along γ, i.e. if v ∈ Tγ(s)M, then dξγ(s)(v) ∈ Tγ(s+c)M
is the parallel translate of v along γ.

The global symmetries of M at p generate transvections in the same way the
point reflections of Euclidean space generate translations. For a given geodesic γ,
consider the isometry ξγ(c) ◦ ξγ(0) constructed from the global symmetries of M at
γ(c) and γ(0). We have already seen that ξp reverses the geodesics through p, i.e.
ξγ(0)(γ(s)) = γ(−s), and since c is the midpoint of [−s, s + 2c], we have ξγ(c) ◦
ξγ(0)(γ(s)) = γ(s + 2c). The second property above can be proven similarly.

SinceM is connected, two points p and q can be connected by a (broken) geodesic.
The composition of the transvections along the smooth pieces of the geodesic then
provides an isometry which maps p to q. We have thus seen that the isometry group
I (M) acts transitively on M. One can then show that also the identity component
I0(M) of the isometry group I (M) acts transitively onM.We then define G = I0(M)

and take H to be the isotropy or stabilizer group of some point p ∈ M,

H = {g ∈ G : g · p = p}. (3.2)
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Concerning the manifold structures of M and G/H, we note that since H is a closed
subgroup ofG, there is a uniqueway to equipG/Hwith amanifold structure, such that
the canonical projection becomes smooth. With this structure, the map j : G/H →
M, gH �→ g · p becomes a diffeomorphism.

For the example of the three-dimensional sphere S3, the identity component of
the isometry group is SO(4) and the isotropy group of the pole N = (0, 0, 0, 1) is
given by

H =
{(

A 0
0 1

)
: A ∈ SO(3)

}
� SO(3) . (3.3)

We can hence identify the sphere S3 with the coset space SO(4)/SO(3).
We have seen above that we can represent any symmetric space as a coset space

G/H. The additional structure provided by the global symmetry has profound conse-
quences for the Lie algebras h and g of H andG. Consider the map σ(g) = ξp · g · ξp,
where ξp is the global symmetry of M = G/H at the fixed point of the action of H.
Since ξp = ξ−1

p , we find that σ : G → G is an involutive automorphism of G. More-
over, one can show that the set

Gσ = {g ∈ G : σ(g) = g}

of fixed points of σ is a closed subgroup of G in such a way that (Gσ)0 ⊂ H ⊂ Gσ .
The derivative of σ at the unit element e gives rise to a Lie algebra automorphism
� : g → g,

�(X) = dσe(X) = d

dt
σ (exp (t X)) |t=0 . (3.4)

It follows that �2 = idg and thus � has eigenvalues ±1. We can identify the Lie
algebra h with the eigenspace of � for the eigenvalue +1,

h = {X ∈ g : �(X) = X} . (3.5)

In order to prove the above relation, suppose first that X ∈ h. Since σ acts as the
identity on H, we have dσe(X) = X . Conversely, suppose that �(X) = X . We con-
sider the one-parameter subgroup αt (X) = exp(t X). Then the set σ(αt (X)) is also
a one-parameter subgroup with the same initial velocity,

d

dt
σ(αt (X))|t=0 = �(X) = X ,

such that σ(αt (X)) = αt (X). Hence we have αt (X) ∈ (Gσ)0 ⊂ H , such that X ∈ h.
The Lie algebra g can then be written as the direct sum of h and the subspace

m = {X ∈ g : �(X) = −X} . (3.6)
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The projections onto the components h and m are given by

Ph(X) = 1
2 (X + �(X)) , Pm(X) = 1

2 (X − �(X)) . (3.7)

Since� is a Lie algebra automorphism, it follows that the decomposition g = h ⊕ m
gives a Z2-grading on g,

[h, h] ⊂ h , [h,m] ⊂ m , [m,m] ⊂ h . (3.8)

These are the sought-after algebraic relations for the Lie algebra g = h ⊕ m that
guarantee that the coset G/H becomes a symmetric space.

Let us once more return to our example of the three-dimensional sphere S3. The
global symmetry given in Eq. (3.1) induces the automorphism σ(g) = KgK with
K = diag (−1,−1,−1, 1). Then we have

SO(4)σ =
{(

g 0
0 1

)
: g ∈ SO(3)

}
= H � SO(3) , (3.9)

as before. The Lie algebra automorphism � = dσe is then given by �(X) = K XK
and we find

h =
{(

X 0
0 0

)
: X ∈ so(3)

}
� so(3) , m =

{(
0 v

−vT 0

)
: v ∈ R

3

}
. (3.10)

By direct matrix multiplication one may then show that the relations (3.8) are indeed
satisfied.

So far, we have seen that a symmetric space can be identified with a coset space
G/Hand studied the implicationswhich the global symmetries ofMhave onG.Rather
than having a metric only on M, it is more convenient to work with a metric on G
such that we can express all quantities through coset representatives. The subspace
m of the Lie algebra g corresponds to the tangent space TpM. If we identify m as
usual with the set of subspaces of tangent spaces obtained by left-multiplication in
G, the correspondence between m and the tangent spaces of M extends to arbitrary
points.

If we now fix an Ad(H)-invariant1 scalar product onm, it corresponds to a metric
on M for which the G-action gives isometries. A natural choice for a scalar product
like this is given by the Killing metric B on G, which is given by the trace in the
adjoint representation: With adX (Y ) = [X,Y ], we have

B(X,Y ) = tr (adX · adY ) . (3.11)

1For some h ∈ H, themapAdh : g → g is defined as the differential of the conjugationmapCh(g) =
hgh−1.
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Fig. 3.1 Depiction of the
coset space G/H

The Killing metric is in fact invariant under all automorphisms of G, such that we
have in particular

B(X,Y ) = B(�(X),�(Y )) ∀ X,Y ∈ g , (3.12)

which implies that h and m are perpendicular, h ⊥ m. If the Lie algebra g is simple,
the Killing metric is proportional to the trace in the fundamental representation,

B(X,Y ) = c tr (X Y ) . (3.13)

In the case of AdSN , we are dealing with a simple Lie algebra g and in the general
discussion of symmetric space models below, we will employ the fundamental rep-
resentation with the scalar product on g given by the trace. This will simplify the
notation considerably as we can e.g. use direct matrix multiplication instead of the
differential of some group action.We need not, however, assume that we are working
with a simple Lie-algebra g. It is sufficient for us that the trace gives a non-degenerate
scalar product, which is invariant under the automorphism �; this can also be seen
directly from the form of � discussed above.

With a metric on G established, we are now in a position to work directly with
group elements without referring to the original spaceM. Concretely, for each q ∈ M
we choose a coset representative g(q) in a smooth way. A natural choice for the set
of coset representatives is given by exponentiating the subspace m ⊂ g, but we are
free to right-multiply with elements of H at each point. Indeed, a different choice of
coset representatives will prove to be convenient in the coset description of AdS5,
which we discuss in Chap.4. If we now consider two tangent vectors X,Y ∈ TqM,
then by virtue of our choice of coset representatives we have corresponding tangent
vectors XG,YG ∈ Tg(q)G, see also Fig. 3.1. Since the metric on G is left-invariant by
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construction, we can express it in terms of the scalar product on TeG. The scalar
product of X and Y can then be expressed in terms of the corresponding quantities
on G as

〈X,Y 〉q = tr
(
Pm

(
g(q)−1XG

)
Pm

(
g(q)−1YG

))
. (3.14)

In particular, for a parametrizationq(τ ,σ)of a surface onM,wehave a corresponding
parametrization g(τ ,σ) on G and the scalar product of the tangent vectors ∂τq and
∂σq can be expressed in terms of g(τ ,σ) as

〈
∂i q, ∂ j q

〉
q = tr

(
Pm

(
g−1∂ig

)
Pm

(
g−1∂ jg

))
. (3.15)

This allows us to describe the string action for the surface described by q(τ ,σ)

entirely in terms of the corresponding parametrization g(τ ,σ), which will be the
starting point of our discussion in the next section.

3.2 The String Action

We now turn to the discussion of the string action or area functional in a symmetric
space. In the last section, we found that we can describe a surface in M = G/H by a
map g(τ ,σ) from the worldsheet � to G. The relevant quantities for the action are
the Maurer–Cartan current Ui = g−1∂ig as well as its projections

ai = Pm
(
g−1∂ig

)
, Ai = Ph

(
g−1∂ig

)
. (3.16)

In terms of these currents, the Polyakov action is given by

S[g, h] = −T

2

∫
�

dτ ∧ dσ
√
h hi j tr

(
ai a j

)
. (3.17)

Here, we introduced the Euclidean worldsheet metric hi j and denoted h = det(hi j )
and the inverse of themetric hi j . Moreover, we have set (σ1,σ2) = (τ ,σ). The bound-
ary curve of the minimal surface is situated at τ = 0 and we have periodic boundary
conditions in the σ-variable. The worldsheet metric is subject to the Virasoro con-
straints

tr
(
ai a j

) − 1
2hi j h

kl tr
(
ak al

) = 0 . (3.18)

If we fix conformal gauge and introduce a complex worldsheet coordinate z = σ +
iτ , the Virasoro constraints take the form

tr
(
az az

) = tr
(
az̄ az̄

) = 0 . (3.19)



60 3 Symmetric Space Models

It is customary in string theory to fix conformal gauge, but in the study of minimal
surfaces one may work with the Nambu–Goto action and not all minimal surface
solutions are necessarily given in a conformal parametrization. We will hence avoid
fixing a gauge condition for the parametrization of the surface andworkwith a general
parametrization. This can be achieved without creating additional complications by
employing the language of differential forms on the worldsheet. An introduction to
the use of differential forms in the case at hand as well as a collection of helpful
identities is provided in Appendix A.3. In calculating with these differential forms
it is important to remember that their components take values in a Lie algebra g and
hence do not commute. For two general one-forms ω and ρ we have e.g.

ω ∧ ρ + ρ ∧ ω = [
ωi , ρ j

]
dσi ∧ dσ j . (3.20)

The worldsheet metric is incorporated in the Hodge star operator, which maps a k-
form to a (2 − k)-form, since the worldsheet is two-dimensional. On one-forms, the
Hodge star operator acts as

∗ dσi = √
h hi j ε jk dσ

k . (3.21)

Here, we fix the convention ετσ = ε12 = 1 for the Levi-Civita symbol and note the
identities

∗ ∗ w = −ω , ω ∧ ∗ρ = − ∗ ω ∧ ρ , (3.22)

for two general one-forms ω and ρ. The notation using differential forms and the
Hodge star operator is related to index notation by

ω ∧ ∗ρ = √
h hi jωi ρ j (dτ ∧ dσ) , d ∗ ω = ∂i

(√
hhi jω j

)
(dτ ∧ dσ) .

We can hence write the Polyakov action (3.17) in a compact way as

S[g, h] = −T

2

∫
�

tr (a ∧ ∗a) . (3.23)

The variation of the action with respect to g gives the equations of motion. Varying
the embedding q(τ ,σ) with a fixed set of coset representatives would not give a
completely general δg, but since the choice of coset representatives does not carry any
physical information allowing for a general δg does not imply additional restrictions.
Since the subspaces h andm are perpendicular to each other, we have δ tr (a ∧ ∗a) =
2 tr (δU ∧ ∗a) and using that δU = d(g−1δg) + [U, g−1δg], we obtain the variation
of the action as
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δS = −T
∫

�

tr
[(
d(g−1δg) + [U, g−1δg]) ∧ ∗a]

(3.24)

= T
∫

�

tr
[
(d ∗ a + ∗a ∧U +U ∧ ∗a) g−1δg

] − T
∫

∂�

tr
(
g−1δg ∗ a

)
,

where we have used Eq. (A.43) and integrated by parts. For a minimal surface, we
keep the boundary fixed and thus we demand that the variation g−1δg takes values in
h at the boundary, such that the boundary term above vanishes. InsertingU = A + a,
we see that the a-part drops out of the first term, which leaves us with the equations
of motion

d ∗ a + ∗a ∧ A + A ∧ ∗a = 0 . (3.25)

We have constructed the coset model to have a gauge redundancy associated to the
isotropy group H, which we will call the gauge group from now on. In terms of the
functions g(τ ,σ), the gauge transformations are given by right multiplication of g
with local elements R(τ ,σ) ∈ H. Then, the Maurer–Cartan form transforms as

U �→ R−1UR + R−1dR

and since [h, h] ⊂ h and [h,m] ⊂ m, we can conclude that its components transform
as

A �→ R−1AR + R−1dR , a �→ R−1aR ,

such that the action is invariant, as it should be. The global G-Symmetry acts on g by
left-multiplication with a constant L ∈ G. The Maurer–Cartan form then transforms
as

g−1dg �→ g−1L−1d(Lg) = g−1dg ,

such that the action is invariant. Of course, this symmetry was built in by choosing G
to be the isometry group ofM. Inwriting the action in the form (3.23),we have already
applied the G-invariance of the metric on G, which then appears as the invariance of
the Maurer–Cartan form under left-multiplication.

In order to derive the Noether current associated to this symmetry, we consider
the infinitesimal transformation

δg = εg (3.26)

with ε ∈ g. We can derive the Noether current by introducing a local parameter in
the variation, which can be achieved here by allowing ε to depend on the worldsheet
coordinates. Then, since for constant ε we are considering a symmetry variation, the
variation of the action can be written in the form δS = ∫ ∗ j ∧ dε. If we impose the



62 3 Symmetric Space Models

equations of motion, any variation of the action will vanish such that the current
j has to be conserved, d ∗ j = 0. In the present case, the variation of g implies
δU = g−1dεg and thus the variation of the action is given by

δS = T
∫

tr(∗a ∧ g−1dεg) = T
∫

tr(g ∗ ag−1 ∧ dε). (3.27)

We have thus found the Noether current and the associated charge to be given by

j = −2gag−1 , Q =
∫

∗ j . (3.28)

We can convince ourselves that theNoether current is indeed conserved by employing
Eq. (C.2) to find

d ∗ j = −2g (d ∗ a + A ∧ ∗a + ∗a ∧ A) g−1 = 0 , (3.29)

wherewe have inserted the equations ofmotion (3.25).A crucial feature of symmetric
spacemodels is that the Noether current is also flat, i.e. d j + j ∧ j = 0. This follows
from the flatness of the Maurer–Cartan form, which is flat by construction,

dU = d
(
g−1dg

) = dg−1 ∧ dg = −g−1dg ∧ g−1dg = −U ∧U .

For the projections A and a, this implies the relations

dA + A ∧ A + a ∧ a = 0 , da + a ∧ A + A ∧ a = 0 . (3.30)

Here, we made use of the fact that the combination (a ∧ A + A ∧ a) is given by a
commutator of the components of A and a and employed the grading (3.8) of g to
obtain the projections. The flatness of the Noether current j then follows from a short
calculation,

d j + j ∧ j = −2g (da + A ∧ a + a ∧ A + 2a ∧ a − 2a ∧ a) g−1 = 0 . (3.31)

It allows to construct an infinite hierarchy of conserved charges and hence indicates
the integrability of the model. We review the construction of the infinite tower of
conserved currents and charges in the next section.

3.3 Integrability and Conserved Charges

Given a flat and conserved current, an infinite tower of conserved charges may be
obtained from an iterative procedure introduced by Brézin, Itzykson, Zinn–Justin
and Zuber (BIZZ) in Ref. [11]. In reviewing their construction we begin by defining
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the covariant derivative D which contains the Noether current j as a connection and
acts on g-valued functions f and one-forms ω as

D f = d f − f j , D ω = dω + ω ∧ j . (3.32)

With these definitions, we find the identities

DD f = −d f ∧ j − f d j + (d f − f j) ∧ j = − f (d j + j ∧ j) = 0 , (3.33)

as well as

d ∗ D f = d ∗ d f − d f ∧ ∗ j − f d ∗ j = d ∗ d f + ∗d f ∧ j = D ∗ d f . (3.34)

Here, we have applied that the Noether current is conserved, d ∗ j = 0, such that
the above relation only holds on-shell. Let us now suppose that we have a conserved
current j̃ (n) which can be written as j̃ (n) = Dχ(n−1) for some function χ(n−1). Since
j̃ (n) is conserved, we can calculate a potential defined by j̃ (n) = ∗dχ(n). Given this
potential, we define a higher current by

j̃ (n+1) = Dχ(n) . (3.35)

The crux of the construction is that the new current is conserved,

d ∗ j̃ (n+1) = d ∗ Dχ(n) = D ∗ dχ(n) = D j̃ (n) = DDχ(n−1) = 0 . (3.36)

We can hence construct an infinite set of conserved currents beginning with j̃ (0) =
− j which can indeed be expressed as j̃ (0) = Dχ(−1) with χ(−1) = 1. The first two
currents obtained from this recursion take the form

j̃ (0) = − j , j̃ (1) = ∗ j − χ(0) j , j̃ (2) = j + χ(0) ∗ j − χ(1) j . (3.37)

A different method to construct an infinite tower of conserved charges is to intro-
duce a Lax connection, which here is a family of flat connections parametrized by a
spectral parameter u ∈ C. We can obtain such a connection by considering the ansatz

Lu = A + α a + β ∗ a , (3.38)

and fixing the coefficients from the requirement that Lu is flat when the equations of
motion are enforced. Using the flatness condition (3.30) for a as well as the equations
of motion (3.25), we find

dLu + Lu ∧ Lu = dA + A ∧ A + (
α2 + β2

)
a ∧ a . (3.39)
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The comparison with the flatness condition for A then shows that we need to require
α2 + β2 = 1 in order for Lu to be flat. We then have the Lax connection

Lu = A + 1 − u2

1 + u2
a − 2u

1 + u2
∗ a = A + cos(θ) a + sin(θ) ∗ a . (3.40)

Here, we have introduced two different parametrizations by u and θ, which are related
to each other by

eiθ = 1 − iu

1 + iu
. (3.41)

Depending on the context, either the u- or the θ-parametrization will be more con-
venient. The undeformed case is reached by setting u or θ to zero, respectively. We
note that the h-part of the Maurer–Cartan current remains unaltered, while the trans-
formation of them-part is reminiscent of a worldsheet rotation, which is particularly
apparent using the θ-parametrization and in conformal gauge, where we can write
the deformation as

a �→ aθ = e−iθaz dz + eiθaz̄ dz̄ . (3.42)

This transformation is not an honest rotation, however, since the h-valued part is not
transformed and the argument of az is kept fixed.

In order to derive conserved charges in this approach, we consider themonodromy
over the Lax connection L , which is given by

Tu = −→
Pexp

(∫
γ

Lu

)
. (3.43)

Here, γ is a closed curve wrapping the worldsheet, which we typically assume to lie
at constant τ and cover the whole period of the σ-coordinate.

The conserved charges obtained from the BIZZ recursion can be extracted from
Tu by expanding around the undeformed case u = 0. However, in the form given
above, Tu is completely non-local at u = 0, which complicates the expansion. We
can circumvent this issue by considering the transformed Lax connection

�u = gLug
−1 − dg g−1 = g(Lu −U )g−1 . (3.44)

The flatness of �u follows directly from the flatness of U and Lu . Making use of
Eq. (A.42), we have

d�u = g (U ∧U − Lu ∧ Lu +U ∧ (Lu −U ) + (Lu −U ) ∧U ) g−1

= −g ((Lu −U ) ∧ (Lu −U )) g−1 = −�u ∧ �u .

In terms of the Lax connection �u , we find that Tu is given by
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Tu = g0 tu g−1
0 , tu = −→

Pexp

(∫
γ

�u

)
, (3.45)

where g0 is the value of g at the base point z0 of the curve over which we consider the
monodromy. For a proof of the above transformation behaviour, the reader is referred
to Appendix A.3, where we discuss flat connections and path-ordered exponentials
in more detail. The transformation is similar to the gauge transformation of a Wilson
loop and it is sometimes referred to as a gauge transformation, although strictly it is
not a gauge transformation in this context since g does not take values in the gauge
groupH. Inserting the explicit form of Lu from (3.40), we see that the Lax connection
�u represents a flat deformation of the Noether current j :

�u = u

1 + u2
(
u j + ∗ j) . (3.46)

In particular, the transformed connection �u vanishes at u = 0 such that we may
expand around u = 0 to find

tu = 1 + u
∫

γ

∗ j + O(u2) . (3.47)

In order to compare the charges obtained from theBIZZ recursion to the ones obtained
from the expansion of tu , it is convenient to consider the quantity χu which is defined
by

dχu = χu�u , χu(z0) = 1 . (3.48)

The above relation is known as the auxiliary linear problem for the connection �u .
The existence of a solution follows from the flatness of �u , which implies that

d2χu = d (χu�u) = χu (�u ∧ �u + d�u) = 0 .

We can then apply the Poincaré lemma to infer that a unique solution exists. To be
more precise, applying the lemma requires that the underlying space is contractible,
which implies in particular that it is simply connected. In the case of closed strings,
where the string embedding is not simply connected, wemaywork on the worldsheet
� extending over a single period. This prohibits consideringmultiplywound contours
and leads to a unique solution. If the connection �u were not flat, a solution would
not exist. We could then restrict the defining relation (3.48) to a curve and solve the
resulting ordinary differential equation along the curve. The solution can formally be
written as the path-ordered exponential of the contour-integral over the connection as
for the monodromy above. In the case of a flat connection, the existence of a solution
of equation (3.48) shows that the monodromy becomes path independent. This holds
for any two contours which can be deformed continuously into each other. Since
the minimal surfaces are simply connected, we can in particular shrink any closed
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contour into a point and hence the monodromy is trivialized, tu = 1, in this case.
This implies in particular that all conserved charges vanish.

The quantity χu , however, also allows to extract the conserved currents. We can
then convince ourselves that the conserved currents derived from the auxiliary linear
problem for �u are the same as the ones obtained from the BIZZ recursion. This was
established in Ref. [12]. Concretely, the quantity χu is the generating function for
the BIZZ potentials χ(n) introduced above,

χu =
∞∑
n=0

χ(n−1)un . (3.49)

In order to prove this relation, we express the BIZZ recursion as a recursion relation
for the potentials,

∗dχ(n+1) = Dχ(n) . (3.50)

It is then easy to see that the defining equation (3.48) implies the above recursion
relation. We invert (3.46) to obtain

j = �u − u−1 ∗ �u ⇒ ∗�u = u(�u − j) , (3.51)

which shows that χu satisfies

∗dχu = χu ∗ �u = u χu (�u − j) = u (dχu − χu j) = uDχu . (3.52)

Expanding this equation in powers of u results in the BIZZ recursion (3.50). Noting
that �u=0 = 0 implies χu=0 = 1 concludes the proof. However, there is a subtle dif-
ference between the charges obtained from the BIZZ recursion and the ones obtained
from the expansion of the monodromy tu , which will become clear in the following
discussion.

We have seen above that the monodromy is trivial in the case of minimal surfaces,
since they are simply connected, such that all conserved charges obtained from the
expansion of the monodromy vanish. In the case of closed strings, the situation is
more complicated. The difference becomes particularly apparent when considering
the charge

Q̃(1) =
∫

∗ j (1) = −
∫ (

χ(0) ∗ j + j
)
. (3.53)

For simplicity, we restrict to conformal gauge and consider the contour to be at
constant τ . Then we have

∂τ Q̃
(1) = j (1)σ (τ , 2π) − j (1)σ (τ , 0) = (

χ(0)(τ , 2π) − χ(0)(τ , 0)
)
jσ(τ , 0) , (3.54)
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where we have used the periodicity of jσ in the last step. We observe that in order
for Q̃(1) to be a conserved charge, the function χ(0)(τ ,σ) has to be periodic as well.
This corresponds to the vanishing of the Noether charge

Q(0) =
∫

∗ j ,

which happens for theminimal surfaces but not in general in the case of closed strings
as we discussed above.

However, one can still extract an infinite set of conserved charges for the closed
strings using the expansion of the monodromy. Here, the difference to the charges
obtained from the BIZZ recursion becomes important. We have seen above that the
expressions for the charges derived from both formalisms in terms of the Noether
current j and the potentials χ(n) are the same. The difference between the charges
is due to the initial conditions we impose on the functions χ(n). For example in the
case of the charge Q̃(1),

Q̃(1) = −
∫ (

χ(0) ∗ j − j
)

,

we impose the initial conditions

χ(0)
BIZZ(τ0, 0) = 0 , χ(0)

mon(τ , 0) = 0 ,

for the BIZZ recursion and the expansion of the monodromy, respectively. Here, τ0
correspond to some fixed point, at which we impose the initial condition in deter-
mining the potential χ(0)

BIZZ. In contrast, the integration in calculating Q̃(1) is taken
at constant τ and the initial condition we impose for χ(0)

mon changes accordingly. The
two versions of χ(0) are then related by

χ(0)
mon(τ ,σ) = χ(0)

BIZZ(τ ,σ) −
∫ (τ ,0)

(τ0,0)
∗ j ,

such that the level-1 charges are related by

Q̃(1)
mon(τ ) = Q̃(1)

BIZZ(τ ) −
( ∫ (τ ,0)

(τ0,0)
∗ j

)
Q(0) ,

which implies that

∂τ Q̃
(1)
mon(τ ) = [

Q(0) , jσ(τ , 0)
]
. (3.55)

The above relation differs from the respective relation (3.54) for the BIZZ construc-
tion by the appearance of the commutator, which is crucial for the construction of
the conserved charges in the case of the closed string. In order to discuss this con-
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struction, we consider the τ -derivative of the monodromy tu , which can be obtained
from noting that tu is the monodromy for the auxiliary linear problem, i.e.

χu(τ , 2π) = χu(τ , 0) tu . (3.56)

Here, we have used that tu is constructed from the solution of the auxiliary linear
problem along γ and that multiplying with χu(τ , 0) ensures the appropriate initial
condition. We can now take the τ -derivative to find

χu(τ , 0) tu �u,τ (τ , 0) = χu(τ , 0) �u,τ (τ , 0) tu + χu(τ , 0) ∂τ tu , (3.57)

which implies the evolution equation for the monodromy tu ,

∂τ tu(τ ) = [
tu(τ ) , �u,τ (τ , 0)

]
. (3.58)

Equations of this type are well-known in the study of integrable systems, where they
appear for the Lax pair. We can formally solve the above relation by noting that the
monodromies for different values of τ are related by a similarity transformation,

tu(τ ) = Su(τ , τ0)
−1 tu(τ0) Su(τ , τ0) , (3.59)

where Su(τ , τ0) is defined by the relations

∂τ Su(τ , τ0) = Su(τ , τ0) �u,τ (τ , 0) , Su(τ0, τ0) = 1 . (3.60)

This shows that the spectrum of tu(τ ) is τ -independent, and we can hence employ the
u-dependent eigenvalues of tu to construct the conserved charges. The expansion of
the monodromy tu or its eigenvalues is the typical approach to construct an infinite
tower of conserved charges in an integrable string theory and is important in the
construction of the spectral curves employed in integrability calculations on either
side of the AdS/CFT correspondence, cf. e.g. Refs. [13–17].

Let us conclude by noting that in a two-dimensional field theory the vanishing
of the currents at spatial infinity implies that tu (taken from −∞ to +∞) is con-
served. The study of minimal surfaces is thus in some sense more similar to the
two-dimensional field theory than to string theory.

3.4 Master Symmetry

In this section, we introduce the master symmetry, which maps a solution g of the
equations of motion to another solution gu of the equations of motion. Such transfor-
mations are often called Bäcklund or dressing transformations. However, the precise
relation between the master symmetry and the Bäcklund transformations considered
in the literature remains to be made explicit. The starting point for this analysis was
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the observation made in Refs. [4, 5], which constructed spectral parameter deforma-
tions for minimal surfaces in Euclidean AdS3 based on a Pohlmeyer reduction of
the corresponding string theory. The symmetry had however been discussed earlier
in Ref. [6] for general symmetric space models, where it was used to construct an
infinite set of conserved charges. In fact, the master symmetry can be applied to
derive an infinite set of symmetry variations as well; this is discussed in Sect. 3.6.
Here, we study the map g �→ gu and discuss its properties.

The symmetry is based on the observation that the action, the equations of motion
and the Virasoro constraints remain unaltered upon replacing U �→ Lu . For the
action, this follows immediately by replacing

a �→ au = 1 − u2

1 + u2
a − 2u

1 + u2
∗ a , (3.61)

which implies that

Su = −T

2

∫
tr(au ∧ ∗au) = −T

2

(1 − u2)2 + 4u2

(1 + u2)2

∫
tr (a ∧ ∗a) = S . (3.62)

In the case of the Virasoro constraints, we restrict to conformal gauge and employ
relation (3.42) to find

tr
(
aθ,z aθ,z

) = e−2iθ tr (az az) = 0 , tr
(
aθ,z̄ aθ,z̄

) = e2iθ tr (az̄ az̄) = 0 . (3.63)

The invariance of the equations of motion follows by making use of the flatness
condition (3.30):

d ∗au + ∗au ∧ Au + Au ∧ ∗au =1 − u2

1 + u2
(d ∗a + ∗a ∧ A + A ∧ ∗a) = 0 . (3.64)

We can carry over the transformationU �→ Lu to the fundamental fields g by impos-
ing the differential equation

g−1
u dgu = Lu , gu(z0) = g(z0) , (3.65)

where we have have demanded that the transformation has a fixed point z0 on the
worldsheet. We note that in order to think of the deformation (3.42) as a symmetry
transformation of physical solutions, we need to impose a reality condition on Lu

which leads to the restriction that u ∈ R. In the following, we will refer to this
transformation as the master symmetry due to its property to map conserved charges
to conserved charges and to generate infinite towers of nonlocal symmetries of the
model.

A convenient description of the transformed solution is obtained by writing the
deformed solution as the left-multiplication of g by some G-valued function χu that
mediates between the original and the transformed solution. A quick analysis shows
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that this function is indeed given by χu . The transformation described by Eq. (3.65)
can thus be rewritten as

gu = χu g , dχu = χu �u , χu(z0) = 1 . (3.66)

In this form, the transformation was described for general symmetric space models
in Ref. [6].

The infinitesimal version of the master symmetry transformation is thus given by

δ̂g = ġu |u=0 = χ̇u |u=0 g = χ(0)g , (3.67)

where we introduced the dot to denote u-derivatives. The symbol χ(0) represents the
coefficient of the linear term in the Taylor expansion (3.49), which satisfies

dχ(0) = ∗ j . (3.68)

We have thus identified the function χ(0), which generates the master symmetry as
the potential of the G-symmetry Noether current. We note that the master symmetry
acts on the Maurer–Cartan form U as

δ̂U = − ∗ a = − (Pm ◦ ∗)U . (3.69)

It hence reproduces themap�, which was employed in Ref. [18] to construct the Lax
connection of symmetric space models by exponentiation. There, it was observed
that the exponentiation construction can be extended to a wider class of models.

Before turning to the discussion of infinitesimal symmetries, we consider the
properties of large master symmetry transformations. Changing the base point where
the initial condition is imposed from z0 to z1 corresponds to a globalG-transformation
of the solution from the left by χu(z1)−1. This can be shown by using the uniqueness
of the solution to equation (3.66). If we denote by χz1

u the function defined by the
differential equation

dχz1
u = χz1

u �u , χz1
u (z1) = 1 , (3.70)

and likewise for χz0
u , we see that both χz1

u and χz0
u (z1)−1χz0

u satisfy relation (3.70).
The uniqueness of the solution to this equation then leads us to conclude that the two
solutions are equal.

We can study the relation of the master symmetry to G-symmetries as well as
the concatenation of two master symmetry transformations in a similar fashion. For
this purpose, it is convenient to denote the map g �→ gu by gu = Mu(g). Let us first
note that the master symmetry commutes with the G-symmetry transformations of
the model, i.e. that we have

Mu(Lg) = LMu(g) . (3.71)
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This may be concluded from the fact that the Maurer–Cartan current U = g−1dg is
invariant under g �→ Lg using again the uniqueness of the solution to (3.65), once a
boundary condition is specified.

The structure appearing for the concatenation of two master symmetry transfor-
mations is particularly clear in terms of the angular spectral parameter θ introduced
in Eq. (3.41). If we take Lθ1 to be the Maurer–Cartan current of a deformed solu-
tion gθ1 and calculate the Lax connection for a different angle θ2, we obtain the Lax
connection

(
Lθ1

)
θ2

= A + cos θ2 (cos θ1 a + sin θ1 ∗ a) + sin θ2 ∗ (cos θ1 a + sin θ1 ∗ a) = Lθ1+θ2 .

This structure can again be carried over to the solutions gθ by using the uniqueness
of the solution of the defining relation (3.65), for which we correspondingly obtain
the relation

(
Mθ1 ◦ Mθ2

)
(g) = Mθ1+θ2(g) . (3.72)

In order to express this relation in terms of the parameter u, Mu1 ◦ Mu2 = Mu3 , we
need to solve

eiθ1+iθ2 = 1 − iu1
1 + iu1

1 − iu2
1 + iu2

= 1 − iu3
1 + iu3

= eiθ3 (3.73)

to find the following composition rule for the spectral parameter u:

u3 = u1 ⊕ u2 = u1 + u2
1 − u1u2

. (3.74)

From this rule, we obtain a formula for the variation of the deformed solution gu ,

δ̂gu = d

du′ gu⊕u′

∣∣∣∣
u′=0

= dgu
du

d

du′
u + u′

1 − uu′

∣∣∣∣
u′=0

= (1 + u2)
d

du
gu . (3.75)

We can translate this relation into an expression for the variation of χu under δ̂,

δ̂ (χu g) = (1 + u2)
d

du
(χu g) ⇒ δ̂χu = (

1 + u2
) d

du
χu − χu · χ(0) . (3.76)

Let us conclude again by commenting on themaster symmetry in the case of closed
strings. Aswe have noted before, the key difference there is that the solutionχu of the
auxiliary linear problem is no longer periodic. The deformed solutions gu would thus
typically violate the periodic boundary conditions. In other words, applying a master
symmetry transformation breaks open the closed strings. However, this finding does
not exclude the possibility that the master symmetry generates a recursion on the
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conserved charges obtained from the eigenvalues of the monodromy also for the
case of closed strings.

3.5 Master Symmetry of Principal Chiral Models

We take a short excursion and discuss the master symmetry for principal chiral
models, which will be employed in the discussion of certain minimal surfaces in
AdS3. Principal chiral models are a well-known class of integrable models. In the
case of a string theory, the target space is given by a group manifold G. The basic
variables of a principal chiral model are matrices gp(τ ,σ) taking values in some
representation of a Lie Group G. We define the left and right Maurer–Cartan forms
to be given by

Ur
p = g−1

p dgp , Ul
p = −dgpg

−1
p . (3.77)

Both currents are flat by construction, dUr/ l
p +Ur/ l

p ∧Ur/ l
p = 0. The classical prin-

cipal chiral model is defined by the action

S = −T

2

∫
tr

(
Ur

p ∧ ∗Ur
p

) = −T

2

∫
tr

(
Ul

p ∧ ∗Ul
p

)
. (3.78)

The action is invariant under left- and right-multiplication of g by elements of G
and the currentsUr

p andU
l
p can be identified as the respective Noether currents. The

equations of motion for the action (3.78) are given by

d ∗Ur
p = 0 ⇔ d ∗Ul

p = 0 . (3.79)

Both currents can be deformed to obtain a Lax connection, which is flat if the equa-
tions of motion are satisfied,

Lr/ l
p u = u2

1 + u2
Ur/ l

p + u

1 + u2
∗Ur/ l

p . (3.80)

For the symmetric space model, the master symmetry transformation is obtained
from deforming g to gu in such a way that the Maurer–Cartan current associated to
gu is the Lax connection. If one defines the master transformation for the principal
chiral model in the same way, one does not obtain a symmetry of the action since

tr
(
Lr

p u ∧ ∗Lr
p u

) �= tr
(
Ur

p ∧ ∗Ur
p

)
.

In order to obtain the appropriate definition for the master symmetry transformation,
we consider a specific symmetric space model, which reproduces the principal chiral
model on G. This connection was explained in Ref. [6] and is based on considering a
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symmetric spacemodelwith Lie groupGs = G × G.The basic variables arematrices
gs , which we represent as

gs =
(

g1 0
0 g2

)
.

Here, g1 and g2 take values in G. We introduce an automorphism σ : Gs → Gs given
by

σ (gs) = MgsM
−1 =

(
g2 0
0 g1

)
, M =

(
0 1
1 0

)
. (3.81)

The set of fixed points of σ is the diagonal subgroup

H =
{(

g 0
0 g

)
: g ∈ G

}
,

which appears as the gauge group in this context. We have

as = 1

2

(
U1 −U2 0

0 U2 −U1

)
,

and correspondingly the Lagrangian of the symmetric space model is given by

Ls = tr
(
as ∧ ∗as

) = 1

2
tr

(
(U1 −U2) ∧ ∗ (U1 −U2)

)
.

We can hence identify the symmetric space model with a principal chiral model by
setting

gp = g2g
−1
1 . (3.82)

This leads to Ur
p = g1 (U2 −U1) g−1

1 and thus we have

Lp = tr
(
Ur

p ∧ ∗Ur
p

) = 2Ls . (3.83)

For symmetric space models, large master symmetry transformations can be formu-
lated as

gs,u = χu · gs , dχu = χu�u .

Here, �u is the Lax connection
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�u =
(

u2

1 + u2
+ u

1 + u2
∗
) (−2gs as g−1

s

)
(3.84)

=
(

u2

1 + u2
+ u

1 + u2
∗
)(

g1 (U2 −U1) g−1
1 0

0 g2 (U1 −U2) g−1
2

)
=

(
Lr

p 0
0 Ll

p

)
.

Correspondingly we have

g1 u = χr
u · g1 , g2 u = χl

u · g2 ,

where χ
r/ l
u are defined by the auxiliary linear problems

dχr
u = χr

u · Lr
p u , dχl

u = χl
u · Ll

p u .

The master symmetry transformation for the principal chiral model is thus given by

gp u = χl
u · gp · χr

u
−1 , (3.85)

and for the associated variation we have

δ̂gp = χl,(0) · gp − gp · χr,(0) , (3.86)

where χr/ l,(0) are the potentials for the left and right Noether currents,

χr/ l,(0) =
∫

∗Ur/ l
p . (3.87)

3.6 Integrable Completion

In Sect. 3.3, we have outlined different methods to obtain an infinite tower of con-
served charges for symmetric space models. In this section, we discuss another
option, namely to employ the master symmetry discussed above to construct towers
of conserved charges, which is the approach taken in Ref. [6]. We derive the rela-
tion between these charges and the ones obtained from the BIZZ recursion below.
Moreover, we demonstrate explicitly that the master symmetry can be employed to
deform any symmetry variation δ0 into a one-parameter family of symmetries δ0,u .
Given some symmetry variation δ0 with associated conserved current j0, we can
then apply the master symmetry to deform both the symmetry variation δ0 and the
associated conserved current j0 into one-parameter families of variations δ0,u and
conserved currents j0,u , respectively. It is then natural to ask whether the deformed
variations and currents are related by the Noether procedure. However, since the
deformed variations are typically on shell and an off-shell continuation is not always
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known, we can establish this relation only formally. In a sense which we will make
more explicit later on, we have the following picture:

Since the parameter u generated by the master symmetry is the spectral param-
eter underlying the integrability of the model, we refer to this procedure as the
integrable completion of the symmetry δ0 and its associated current j0, respectively.
In particular, this procedure applies to the master symmetry itself, which results in a
one-parameter family of master symmetries δ̂u with associated conserved charges.

3.6.1 Generic Symmetries

We begin by discussing the integrable completion of a generic symmetry. In partic-
ular, we show how to obtain a one-parameter family of symmetry variations from a
given symmetry variation δ0.

Completion of conserved currents and charges. The symmetry variation of a
Noether current must also be a conserved current. This is due to the fact that the
equations of motion are invariant under the variation and that the conservation of the
Noether current is equivalent to the equations of motion. In particular this holds for
the master variation δ̂ applied to any conserved current j0, i.e. we have the conser-
vation equation

d ∗ δ̂ j0 = 0 , (3.88)

which implies that the charge

δ̂Q0 =
∫

∗δ̂ j0 (3.89)

associated with this current is time-independent, at least if the current δ̂ j0 is again
periodic, which we have seen to be the case for minimal surfaces. Instead of acting
multiple times with the master symmetry variation, we can apply a large master sym-
metry transformation to the respective currents and charges by making the replace-
ment g �→ gu = χug in the definition of any current j0 or charge Q0, respectively.
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This gives a one-parameter family of conserved currents and charges,

j0 �→ j0,u = j0|g �→gu , Q0 �→ Q0,u = Q0|g �→gu . (3.90)

We will refer to the above currents and charges as the integrable completions of the
current j0 or the charge Q0, respectively.

Completion of symmetry variations. For any given variation δ0g of the field g, we
introduce a one-parameter family of variations δ0,ug, which we define by

δ0,ug = χ−1
u δ0(χug). (3.91)

Below, we show that if δ0g is a symmetry of the equations of motion, then δ0,ug will
be a symmetry of the equations of motion as well, i.e. we show that

d ∗ δ0 j = 0 ⇒ d ∗ δ0,u j = 0 . (3.92)

We note that the quantityχu is inherently on shell since its definition requires the Lax
connection �u to be flat, which is equivalent to the equations ofmotion. Consequently,
we are not in a position to study the invariance of the action and rather study the
equations of motion.

We begin by deriving a necessary and sufficient criterion for a given variation δg
to be a symmetry.We define η = δg g−1 so that we can write the variation as δg = ηg
and the induced change of the Maurer–Cartan form as δU = g−1dη g. In order to
calculate the variation of the Noether current, it is convenient to write it in the form

j = −2gPm(U )g−1 = g
(
�(U ) −U

)
g−1 . (3.93)

Since � is a linear map on g, its action and the variation commute and we find

δ j = −dη − [ j, η] + g �
(
g−1dη g

)
g−1 . (3.94)

Hence, we have a symmetry of the equations of motion, d ∗ δ j = 0, if and only if

d ∗ (
dη + [ j, η]) = d

(
g �

(
g−1 ∗ dη g

)
g−1

)
. (3.95)

In order to reach a more convenient form, we need to rewrite the right hand side of
the above relation. Abbreviating ω = g−1 ∗ dηg, we have

dω = g−1d ∗ dηg −U ∧ ω − ω ∧U

and we find

d
(
g �(ω)g−1

)
= g

(
U ∧ �(ω) + �(ω) ∧U +�

(
g−1d ∗ dηg −U ∧ ω − ω ∧U

))
g−1 .
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We can rewrite this further by noting that since ω ∧ ρ + ρ ∧ ω leads to a commutator
and � is an involutive automorphism on g, we have

U ∧ �(ω) + �(ω) ∧U = �(�(U ) ∧ ω + ω ∧ �(U )) ,

such that

d
(
g �(ω)g−1) = g �

(
g−1 (d ∗ dη + j ∧ ∗dη + ∗dη ∧ j) g

)
g−1

= g �
(
g−1d ∗ (dη + [ j, η]) g

)
g−1 ,

where we have used the conservation of j in the last step to find

d ∗ [ j, η] = − ∗ j ∧ dη − dη ∧ ∗ j = j ∧ ∗dη + ∗dη ∧ j .

We have thus rewritten the condition (3.95) as

g−1d ∗ (dη + [ j, η]) g = �
(
g−1d ∗ (dη + [ j, η]) g

)
, (3.96)

which states that

g−1d ∗ (dη + [ j, η]) g ∈ h . (3.97)

This is the sought-after necessary and sufficient condition for δg = ηg to be a symme-
try of the model. In most of the cases we consider, this condition is actually satisfied
in the stronger form

d ∗ (dη + [ j, η]) = 0 . (3.98)

With this criterion at hand, we return to the variation (3.91) which is given by
δ0,ug = χ−1

u δ0(χug). By Leibniz’ rule we obtain

δ0,ug = δ0g + (χ−1
u δ0χu)g . (3.99)

Hence, the total variation splits into a part δ0g, which is a symmetry by assumption,
and the part δ′

0,ug = ηg with η = χ−1
u δ0χu . We now demonstrate that also the second

part is a symmetry by showing that (3.98) is satisfied. We begin by noting that

dη = d(χ−1
u δ0χu) = −χ−1

u dχu χ−1
u δ0χu + χ−1

u δ0dχu = δ0�u + [η, �u] , (3.100)

where we used dχu = χu�u as given in (3.66). Then, it follows that

dη + [ j, η] = δ0�u + [η, �u − j] = δ0�u + 1

u
[η, ∗�u] , (3.101)



78 3 Symmetric Space Models

using Eq. (3.51), ∗�u = u(�u − j), in the last step. Taking the divergence of this
equation yields the terms

d ∗ (dη + [ j, η]) = d ∗ δ0�u − 1

u
d[η, �u]

= d ∗ δ0�u − 1

u
(dη ∧ �u + �u ∧ dη) − 1

u
[η, d�u] . (3.102)

Within the middle terms on the right hand side of the above relation, we replace dη
again with the help of (3.100), which gives

dη ∧ �u + �u ∧ dη = δ0�u ∧ �u + �u ∧ δ0�u + [η, �u] ∧ �u + �u ∧ [η, �u]
= δ0 (�u ∧ �u) + [η, �u ∧ �u] = −δ0 d�u − [η, d�u] . (3.103)

Using once more that ∗�u = u(�u − j) or equivalently �u + u ∗ �u = ∗ j , we then
find

d ∗ (dη + [ j, η]) = d δ0

(
∗ �u + 1

u
�u

)
= 1

u
d ∗ δ0 j = 0 . (3.104)

Thus, the condition (3.98) is satisfied and the integrable completion (3.91) of a sym-
metry variation δ0 indeed furnishes a one-parameter family of symmetry variations.

Let us note here that the only symmetry variation which only satisfies the criterion
(3.97) rather than the stronger form (3.98) is the master symmetry variation itself,
for which we have

g−1d ∗ (
dχ(0) + [

j,χ(0)
])

g = −4 a ∧ a ∈ h . (3.105)

Noether procedure and on-shell symmetries. We would now like to derive con-
served charges, which are associated to the nonlocal symmetry transformations dis-
cussed above. Let us point out that due to the definition of χu all of the higher
symmetry transformations are inherently on shell. Carrying out Noether’s procedure
strictly would require to continue the symmetry variations to off-shell symmetries
of the action. This was done in Refs. [19–21] for the Yangian-like symmetries of
principal chiral models and it seems plausible that it could also be done for symmet-
ric space models. Here, we will be satisfied with deriving on-shell expressions for
conserved currents. Let us clarify, how these currents are related to the currents one
would derive from a (hypothetical) off-shell continuation of the underlying symmetry
via Noether’s procedure.

Suppose we had found a way to extend the symmetry transformations discussed
above off shell. This would involve finding off-shell expressions for the quantity χu ,
which can e.g. be done as in Refs. [19, 21] by fixing specific paths from any point
on the worldsheet (or spacetime in their case) to a common starting point and by
defining χu to be the solution of dχu = χu�u along this path. This implies that the
continued χu satisfies
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dχu = χu�u + fu ,

where fu is some one-form which vanishes on-shell. By assumption, the variation
of the Lagrangian can be written as a total derivative, δL = d ∗ k. Hence, k repre-
sents the contribution to the Noether current which would follow from the off-shell
symmetry.

Since we do not have an off-shell continuation of the above symmetries at hand,
we simply perform a formal calculation where we use dχu = χu�u , but we will not
use the equations ofmotion otherwise. For the symmetries we consider, one can show
that in this way we obtain δL = d ∗ k ′. That is, k ′ represents the on-shell contribution
to the current following from our formal procedure. It is then clear that d ∗ (

k − k ′)
will be proportional to fu , which vanishes on-shell. Hence,

(
k − k ′) vanishes on shell

up to the usual freedom in reading off ∗k from d ∗ k. We thus see that the conserved
current we derive would agree on shell with the Noether current one would find if
one continued the symmetry off shell and carried out Noether’s procedure.

3.6.2 Yangian Symmetry

In this subsection we discuss the first nontrivial example of the above integrable
completion via the master symmetry. In particular, we demonstrate that the comple-
tion of the Lie algebra symmetry (3.26) of symmetric space models yields a tower
of nonlocal Yangian symmetries.

Completion of conserved currents and charges. The application of the master
symmetry variation to the conserved current j introduced in (3.28) yields

δ̂ j = −2 ∗ j + [χ(0), j], (3.106)

which is indeed a nonlocal conserved current. The corresponding charge

Q(1) :=
∫

∗δ̂ j = 2
∫

j +
∫

σ1<σ2

[∗ j1, ∗ j2] (3.107)

takes the standard form of a level-1 Yangian charge. We will demonstrate in Sect. 3.7
that these charges indeed obey the commutation relations of the Yangian algebra.
Higher conserved currents and charges can be constructed by repeated application
of δ̂. However, since we know the large transformation generated by δ̂, we need
not carry out this cumbersome procedure. Exponentiating the variation δ̂ essentially
transforms g into gu and all derived quantities like the Noether current j transform
accordingly. The higher charges to be constructed from Q by repeated application
of δ̂ should thus be contained in the one-parameter family of conserved charges
obtained from the transformed solutions gu ,



80 3 Symmetric Space Models

Qu =
∫

∗ ju , (3.108)

ju = −2gu au g−1
u = 1 − u2

1 + u2
χu j χ−1

u − 2u

1 + u2
χu ∗ j χ−1

u .

A more precise relation can be established by applying Eq. (3.75) to obtain a recur-
rence relation for the coefficients of the Taylor expansion of Qu . Since � is a linear
map on g the variation δ̂ acts on au = Pm(g−1

u dgu) in the same way as on gu , such
that

δ̂ Qu = (1 + u2)
d

du
Qu . (3.109)

The relation takes a simpler form for the angular spectral parameter θ introduced in
(3.41) via the relation eiθ = 1−iu

1+iu . In terms of this parameter, the relation reads

δ̂ Qθ = d

dθ
Qθ , (3.110)

which makes manifest that the master symmetry generates the spectral parameter.
Defining the charges Q(n) to be the coefficients in the Taylor expansion

Qθ =
∞∑
n=0

θn

n! Q
(n) ,

we find the recurrence relation

δ̂ Q(n) = Q(n+1). (3.111)

Relation to BIZZ charges. It is evident from comparing the expressions (3.107) and
(3.53) that the charges obtained from the application of the master symmetry and
the BIZZ recursion differ from each other. However, since both charges are based
on the quantity χu , one should expect that they are related to each other. In fact,
such a relation can be established using the variation δ̂. Since the charges themselves
vanish, we compare the expressions for the conserved currents integrated over open
contours. The generating functional for the BIZZ currents is given by j̃u = ∗dχu and
hence the function χu describes the integrals over open contours. The relation to the
respective integral over ju is given by

(
1 + u2

)
χ̇u(z, z̄)χ

−1
u (z, z̄) =

z∫
z0

∗ ju . (3.112)

Note first that the two sides of this equation are the same for u = 0 since dχ(0) = ∗ j .
In order to prove equality for any value ofu, we can employ the variation δ̂ to construct
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a recurrence relation for the Taylor coefficients on either side of equation (3.112).
We have already seen that

δ̂ ju = (
1 + u2

) d

du
ju (3.113)

and a simple application of Eq. (3.76) shows that

δ̂
[(
1 + u2

)
χ̇uχ

−1
u

] = (
1 + u2

) d

du

[(
1 + u2

)
χ̇uχ

−1
u

]
,

which proves the relation (3.112) and hence shows that the charges Q(n) carry the
same information as those obtained from the BIZZ procedure.

Completion of symmetry variations. It is in general not straightforward to obtain
nonlocal symmetries associated to nonlocal charges. However, the integrable com-
pletion of the symmetry variation δε provides a natural candidate for the symmetry
variations associated to the charges discussed above. In order to find the variation δε,u ,
we need to calculate the variation δεχu .We can find this variation e.g. fromnoting that
since the left-multiplication g �→ Lg induces gu �→ Lgu , we have χu �→ Lχu L−1

and hence δεχu = [ε,χu]. The integrable completion of the symmetry variation δε is
thus given by

δε,u g = χ−1
u δε (χu g) = χ−1

u εχu g = ηε,u g. (3.114)

These variations were considered in Ref. [22], where they were uplifted from known
symmetry variations of principal chiral models [12, 19, 20, 23].

Noether procedure for Yangian symmetry. We now turn to the derivation of the
conserved current for the nonlocal symmetries of Yangian type, which are given by
(3.114). As for the derivation of the G-symmetry Noether current, we allow ε to vary
over the worldsheet. We thus find the variation of the Maurer–Cartan current to be

δε,uU = g−1 ([
ηε,u, �u

] + χ−1
u dε χu

)
g . (3.115)

For the variation of the action2 we obtain

δε,u S =
∫

tr
(∗ j ∧ ([

ηε,u, �u
] + χ−1

u dε χu
))

= −
∫

tr
(
(∗ j ∧ �u + �u ∧ ∗ j) ηε,u − χu ∗ j χ−1

u ∧ dε
)

= −
∫

tr

(
2u

1 + u2
( j ∧ j) ηε,u − χu ∗ j χ−1

u ∧ dε

)

2For brevity, we drop the factor containing the string tension T in the calculations of the Noether
currents.
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=
∫

tr

(
2u

1 + u2
(
χu d j χ−1

u

)
ε + χu ∗ j χ−1

u ∧ dε

)
, (3.116)

where we have inserted the explicit expression (3.46) for �u . Note now that

d
(
χu j χ−1

u

) = χu (�u ∧ j + j ∧ �u + d j) χ−1
u = 1 − u2

1 + u2
χu d j χ−1

u . (3.117)

Consequently we have

δε,u S =
∫

tr

(
2u

1 − u2
d

(
χu j χ−1

u

)
ε + χu ∗ j χ−1

u ∧ dε

)
, (3.118)

and dropping boundary terms, we find

δε,u S =
∫

tr

(
χu

(
∗ j + 2u

1 − u2
j

)
χ−1
u ∧ dε

)
. (3.119)

The Noether current associated to the nonlocal symmetry δε,u is thus given by

ju = χu

(
j − 2u

1 − u2
∗ j

)
χ−1
u . (3.120)

Comparing this expression with the G-symmetry Noether current (3.108) of the
transformed solution, we find the relation

ju = 1 + u2

1 − u2
ju . (3.121)

3.6.3 Master Symmetry

Weconsider the second nontrivial example of an integrable completion via themaster
symmetry and apply the completion to the master variation δ̂ itself, yielding a one-
parameter family of master transformations δ̂u and associated charges Q̂u .

Completion of conserved currents and charges. We begin by deriving the con-
served current for the master symmetry, for which we utilize the same method as
before and introduce a coordinate-dependent transformation parameter ρ = ρ(z, z̄)
into the variation, δ̂g = ρχ(0)g, such that we can read off a conserved current ĵ from
δ̂S = ∫ ∗ ĵ ∧ dρ. As a first step we note the variation

δ̂U = g−1d(ρχ(0))g = −2ρ ∗ a + dρ g−1χ(0)g , (3.122)
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where we used Eqs. (3.68) and (3.28). The first term leaves the action invariant while
the second term produces

δ̂S = 2
∫

tr(dρ g−1χ(0)g ∧ ∗a) = −2
∫

tr(g ∗ ag−1χ(0)) ∧ dρ =
∫

tr(∗ jχ(0)) ∧ dρ ,

such that we find the conserved current

ĵ = tr
(
jχ(0)

)
. (3.123)

The associated conserved charge takes the form

Q̂ =
∫

∗ ĵ = 1

2
tr(QQ) , (3.124)

and is recognized as the quadratic Casimir of G. The interesting aspect of this result
is not that tr(QQ) is conserved, which is obvious since Q is conserved, but the fact
that there is a symmetry transformation that has the Casimir as a conserved charge.

We now consider the integrable completion of the conserved charge associated to
the master symmetry. Acting with δ̂ on the current ĵ of (3.123) gives the conserved
master current of level one:

δ̂ ĵ = tr
(
j
(
2χ(1) − χ(0) 2

) − 2 ∗ jχ(0)
)
. (3.125)

The structure of the conserved quantities, however, turns out to be more transparent
if one considers the charges directly. Applying the master symmetry variation δ̂ the
conserved charge Q̂ defined in (3.124) gives the conserved master charge of level
one:

Q̂(1) = tr
(
Q Q(1)) . (3.126)

Employing a large master transformation provides the generating function

Q̂u = 1
2 tr

(
QuQu

)
, (3.127)

and switching to the angular spectral parameter θ, we again find the relation

δ̂ Q̂θ = d

dθ
Q̂θ

such that the Taylor coefficients Q̂(n) of Q̂θ satisfy the recurrence relation

δ̂ Q̂(n) = Q̂(n+1) . (3.128)
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Completion of symmetry variations. Employing relation (3.76) for the action of the
master symmetry δ̂ on χu , we find the integrable completion of the master symmetry
to be given by

δ̂ug = 1

1 + u2
χ−1
u δ̂ (χu g) = χ−1

u χ̇u g . (3.129)

Again, similar variations were considered by Schwarz in Ref. [22], who did not,
however, consider the master symmetry δ̂ itself. Curiously, some Yangian-like vari-
ations δε,u can be obtained from the above variations. Shifting the base point of χu

amounts to left-multiplying χu by χu(z1)−1, χ′
u = χu(z1)−1 · χu , such that we have

δ̂ ′
u = δ̂u + δε,u , (3.130)

with ε = −χ̇u(z1)χu(z1)−1.

Noether procedure. We now derive the Noether current associated to the one-
parameter family of master symmetries:

δ̂ug = ρ ηu g = ρχ−1
u χ̇u g . (3.131)

Here, we have again introduced a coordinate-dependent transformation parameter ρ
in order to derive the Noether current. Making use of δ̂U = g−1(dηuρ + ηudρ)g we
find the variation of the action to be

δ̂S =
∫

{tr (∗ j ∧ dηu) ρ + tr (∗ jηu) ∧ dρ} . (3.132)

By using that dηu = [ηu, �] + �̇, we can recast

tr (∗ j ∧ dηu) = − tr ((∗ j ∧ � + � ∧ ∗ j) ηu) + tr
(∗ j ∧ �̇

)

= 2u

1 + u2
tr

(
d j ηu + 1

1 + u2
∗ j ∧ j

)
,

and comparing with

d tr ( jηu) = 1 − u2

1 + u2
tr

(
d j ηu + 1

1 + u2
∗ j ∧ j

)

yields

δ̂S =
∫ {

2u

1 − u2
d tr ( j ηu) ρ + tr (∗ j ηu) ∧ dρ

}
=

∫
tr

[(
∗ j + 2u

1 − u2
j

)
ηu

]
∧ dρ .

From this we read off the Noether current
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ĵ = tr
(
ju χ̇uχ

−1
u

) = 1 + u2

1 − u2
tr

(
ju χ̇uχ

−1
u

)
. (3.133)

By virtue of equation (3.112), we conclude that

ĵu (z, z̄) = 1

1 − u2
tr

(
ju (z, z̄)

∫ z

z0

∗ ju
)

, (3.134)

such that the Noether charge is identified as

∫
∗ĵu = 1

1 − u2
Q̂u . (3.135)

Note that δ̂u yields the charge Q̂u up to a u-dependent factor.

3.6.4 Spacetime or Worldsheet Symmetries

The principle to conjugate a known symmetry δ0 of the model with χu can also
be applied to spacetime or worldsheet symmetries. A general worldsheet symmetry
δ0 = δWS is described by

δWS g = bi (τ ,σ)∂ig , (3.136)

where the specific form of bi depends on the specific symmetry. The conjugation
with χu then leads to the variations

δWS,u g = bi lu,ig = bi
(

u2

1 + u2
ji − u

1 + u2
√
h εi j h

jk jk

)
g , (3.137)

where for convenience we write the currents j and ∗ j in terms of their components.
Note now that

ji · g = −2gPm
(
g−1∂ig

)
g−1g = −2∂ig + 2gPh

(
g−1∂ig

)
. (3.138)

We thus observe that the variations (3.137) are merely u-dependent linear combina-
tions of the original worldsheet symmetries and gauge transformations.

We conclude this section with a summary of the symmetry variations and charges
found from the integrable completion of the Lie algebra and master symmetry, see
also Table3.1. The integrable completion of the G-symmetry yields the nonlocal
Yangian-like symmetries

δε,ug = χ−1
u εχu g . (3.139)
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Table 3.1 Summary of the symmetries and charges obtained from the integrable completion. The
symbol

∫
<
denotes the ordered double-integral

Level-0 Level-1 Completion

Yangian Variation δεg = εg δ
(1)
ε g = [ε,χ(0)]g δε,ug = χ−1

u εχu g

Charge Q(0) ≡ Q = ∫∗ j Q(1) = ∫
<
[∗ j1, ∗ j2] + 2

∫
j Qu = ∫∗ ju

Master Variation δ̂g = χ(0)g δ̂(1)g = [2χ(1) − (χ(0))2]g δ̂ug = χ−1
u χ̇u g

Charge Q̂(0) = 1
2 tr

(
Q Q

)
Q̂(1) = tr

(
Q Q(1)

)
Q̂u = 1

2 tr
(
QuQu

)

The associated conserved charges are (up to a u-dependent factor) given by

Qu =
∫

∗ ju , (3.140)

ju = −2gu au g−1
u = 1 − u2

1 + u2
χu j χ−1

u − 2u

1 + u2
χu ∗ j χ−1

u ,

which are the charges obtained from the integrable completion of the G-symmetry
Noether charge Q. From the integrable completion of themaster symmetrywe obtain
the higher master symmetry variations

δ̂ug = χ−1
u χ̇u g , (3.141)

for which we find (up to a u-dependent factor) the charges obtained from the inte-
grable completion of the Casimir charge of the G-symmetry,

Q̂u = 1
2 tr

(
QuQu

)
. (3.142)

3.7 The Symmetry Algebra

We now turn to the discussion of the algebra of the symmetries obtained in the last
section. We discuss the algebra of the symmetry variations in Sect. 3.7.1 and the
Poisson algebra of the Noether charges in Sect. 3.7.2. In the latter discussion, we
restrict to the case of a 2-dimensional field theory in order to make contact to the
results of Ref. [24], upon which the discussion builds.

3.7.1 The Algebra of the Variations

We provide the commutation relations for the variations δε,u and δ̂u given in (3.114)
and (3.129), respectively. The commutation relations of similar nonlocal symmetries
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were derived by Schwarz [22] and we follow the methods explained there. Note
however, that Schwarz’ discussion does not include the symmetry δ̂ ≡ δ̂(0).

Let us begin by considering two generic variations δ1, δ2, which are the infinitesi-
mal variations associated to some transformations g �→ Ft

i (g) = f ti (g) · g (i = 1, 2).
Taking t to be infinitesimal, we have the variations

δig = d

dt
Ft
i (g)

∣∣
t=0 = d

dt
f ti (g)

∣∣
t=0 · g = φi (g) · g .

The concatenation of two such variations is given by

δ1 (δ2g) = d

dt2

(
φ1

(
f t22 (g) · g

) · f t22 (g) · g
)
t2=0 = φ1(g) · φ2(g) · g + (δ2 φ1) · g ,

and hence we have the commutator

[δ1 , δ2] g = ([φ1,φ2] + δ2φ1 − δ1φ2) g . (3.143)

The Variations of χu . All arising terms of the form δiφ j can be inferred from the
variations δε1,u1χu2 and δ̂u1χu2 . To reduce the amount of writing, we introduce the
abbreviations

δεi ,ui g = δi g = ηi g = χ−1
i εi χi g , δ̂ui g = ψig = χ−1

i χ̇ig .

The variations are constructed from the solution χu to the auxiliary linear problem

dχu = χu �u , χu(z0, z̄0) = 1 , (3.144)

and their variations can be derived from the varied auxiliary linear problem

χ−1
u (d (δχu) − (δχu) �u) = δ�u , δχu(z0, z̄0) = 0 . (3.145)

We first consider the variation δ1χ2 and begin by calculating δ1�2. We recall that
�i = (

1 + u2i
)−1 (

u2i j + ui ∗ j
)
and use Eq. (3.94) to find

δ1 j = −dη1 − [ j, η1] + g �
(
g−1dη1g

)
g−1 .

We can further simplify this expression by noting that dη1 = [η1, �1] and rewriting

g �(g−1[ j, η1]g)g−1 = −2g �([a, g−1η1g])g−1

= 2g[a, �(g−1η1g)]g−1 = −[ j, η̃1].

Here, we introduced the abbreviation η̃ = g �
(
g−1ηg

)
g−1. Note that the above rela-

tion extends to �1, since it is given by a linear combination of j and ∗ j . Thus we find
that
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δ1 j = [�1 − j, η1] + [
�1, η̃1

]
= 1

1 + u21

(
[− j + u1 ∗ j, η1] + [

u21 j + u1 ∗ j, η̃1
])

, (3.146)

which implies that the variation δ1�2 may be written as

δ1�2 = 1

1 + u22

(
u22 δ1 j + u2 ∗ δ1 j

)

= u2
u1 − u2

[�2 − �1, η1] + u1u2
1 + u1u2

[
�2 + �1 − j, η̃1

]
. (3.147)

We now construct the solution to equation (3.145) from the ansatz

δ1χ2 = γ1 (δ1χ2)1 + γ2 (δ1χ2)2 , (δ1χ2)1 = χ2η1 − ε1χ2 , (δ1χ2)2 = χ2η̃1 − ε′1χ2 .

Here, ε′ is defined by

ε′ = η̃(z0, z̄0) = g0 �
(
g−1
0 εg0

)
g−1
0 , g0 = g(z0, z̄0) ,

such that both (δ1χ2)1 and (δ1χ2)2 satisfy the boundary condition δ1χ2(z0, z̄0) = 0.
By using similar arguments as in the discussion preceding Eq. (3.96), we find that

dη̃1 = g �
(
g−1 (dη1 + [ j, η1]) g

)
g−1 = [

�1 − j, η̃1
]

, (3.148)

and thus we obtain

χ−1
2 (d (δ1χ2) − (δ1χ2) �2) = γ1 [�2 − �1, η1] + γ2

[
�2 + �1 − j, η̃1

]
,

from which we can read off the solution to equation (3.145) as

δ1χ2 = u2
u1 − u2

(χ2η1 − ε1χ2) + u1u2
1 + u1u2

(
χ2η̃1 − ε′

1χ2
)

. (3.149)

We proceed similarly for the calculation of δ̂u1χ2 and begin by calculating δ̂u1�2.
Using Eq. (3.94) as well as the relation dψ = [ψ, �] + �̇, we have

δ̂u1 j = [
�1 − j,ψ1

] + [
�1, ψ̃1

] − 2 �̇1 , (3.150)

abbreviating ψ̃ = g �
(
g−1ψg

)
g−1 as before. The above relation implies that

δ̂u1 �2 = u2
u1 − u2

[
�2 − �1,ψ1

] + u1u2
1 + u1u2

[
�2 + �1 − j, ψ̃1

]

− 2

1 + u22

(
u22 �̇1 + u2 ∗ �̇1

)
.
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Making use of the relation

dψ̃ = g�
(
g−1 (dψ + [ j,ψ]) g

)
g−1 = [

� − j, ψ̃
] − �̇ , (3.151)

one may then show that the defining relation (3.145) for δ̂u1χ2 is solved by

δ̂u1 χ2 = u2
u1 − u2

χ2ψ1 + u1u2
1 + u1u2

χ2ψ̃1 − u2(1 + u22)

(u1 − u2)(1 + u1u2)
χ2ψ2 . (3.152)

Note that the boundary condition δ̂u1χ2(z0) = 0 is automatically satisfied since we
have ψi (z0) = 0.

The commutators. The above results allow us to compute the commutators of the
variations δ(u)

ε and δ̂u . In order to compute the commutator [δ1, δ2] we note that

δ1η2 = [
η2,χ

−1
2 δ1χ2

] = u2
u1 − u2

(
[η2, η1] − χ−1

2 [ε2, ε1]χ2
)

+ u1u2
1 + u1u2

([
η2, η̃1

] − χ−1
2

[
ε2, ε

′
1

]
χ2

)
,

such that

[δ1, δ2] g = ([η1, η2] + δ2η1 − δ1η2) g = u1 δ[ε1,ε2],u1 − u2 δ[ε1,ε2],u2
u1 − u2

g

+u1u2
([

η1, η̃2
] − [

η2, η̃1
] − δ[ε1,ε′

2],u1 + δ[ε2,ε′
1],u2

)
1 + u1u2

g . (3.153)

Noting that

([
η1, η̃2

] − [
η2, η̃1

])
g = gPh

[
g−1η1g,�

(
g−1η2g

)]
, (3.154)

we thus have

[
δε1,u1 , δε2,u2

]
= u1 δ[ε1,ε2],u1 − u2 δ[ε1,ε2],u2

u1 − u2
+ u1u2

(
δ[ε2,ε′

1],u2 − δ[ε1,ε′
2],u1

)
1 + u1u2

,

(3.155)

up to gauge transformations. In order to compute the commutator
[̂
δu1 , δ̂u2

]
, we

employ Eq. (3.152) to find
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δ̂u1ψ2 = −χ−1
2

(̂
δu1χ2

)
ψ2 + χ−1

2
∂

∂u2

(̂
δu1χ2

)

= u2
u2 − u1

[
ψ1,ψ2

] − u1u2
1 + u1u2

[
ψ̃1, ψ2

] − u2(1 + u22)

(u1 − u2)(1 + u1u2)
ψ̇2

−
(

∂

∂u2

u2
u2 − u1

)
ψ1 +

(
∂

∂u2

u1u2
1 + u1u2

)
ψ̃1 −

(
∂

∂u2

u2(1 + u22)

(u1 − u2)(1 + u1u2)

)
ψ2 .

Using equations similar to (3.154) and noting that

ψ̃1 g = g �
(
g−1ψ1g

) = −ψ1 g + g 2Ph
(
g−1ψ1g

) = −δ̂u1g + δhg , (3.156)

we find the commutator

[̂
δu1 , δ̂u2

]
=

2∑
i=1

(1 + u2i )
(
ui∂ui + 1

)
δ̂ui

(u1 − u2)(1 + u1u2)

+ 2
(
u2δ̂u2 − u1δ̂u1

)
(u1 − u2)2

− 2
(
u2δ̂u2 − u1δ̂u1

)
(1 + u1u2)2

, (3.157)

where we have again left out the gauge transformations. In order to compute the
commutator

[̂
δu1, δε2,u2

]
, we use Eqs. (3.149) and (3.152), to find the variations

δ̂u1η2 = u2
u1 − u2

[
η2,ψ1

] + u1u2
1 + u1u2

[
η2, ψ̃1

]

− u2(1 + u22)

(u1 − u2)(1 + u1u2)
∂u2η2 , (3.158)

δε2,u2ψ1 = u1
u2 − u1

[
ψ1, ηε2,u2

] + u1u2
1 + u1u2

[
ψ1, η̃ε2,u2 ,

]
(3.159)

+
(

∂

∂u1

u1
u2 − u1

) (
ηε2,u2 − ηε2,u1

) +
(

∂

∂u1

u1u2
1 + u1u2

) (
η̃ε2,u2 − ηε′

2,u1

)
.

By making use of identities similar to (3.154) and (3.156) we then obtain the com-
mutator

[̂
δu1 , δε,u2

]
= u2

(
δε,u2 − δε,u1

)
(u1 − u2)2

− u2
(
δε,u2 + δε′,u1

)
(1 + u1u2)2

+ u2(1 + u22) ∂u2δε,u2

(u1 − u2)(1 + u1u2)
. (3.160)

Expanded algebra. The underlying algebra takes a more intuitive form after per-
forming an expansion around u = 0. We define the coefficients δ(n)

ε and δ̂(n) by

δε,u =
∞∑
n=0

un δ(n)
ε , δ̂u =

∞∑
n=0

un δ̂(n) , (3.161)
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and we set δ(n)
ε = 0 = δ̂(n) for n < 0 . The expansion of all commutators can be

performed by making repeated use of the identity

un+1
1 − un+1

2 = (u1 − u2)
n∑

k=0

un−k
1 uk2 .

Expanding the commutation relations of the Yangian-type symmetries leads to the
relations

[
δ(n)
ε1

, δ(m)
ε2

]
=

⎧⎨
⎩

δ(m+n)
[ε1,ε2] if n = 0 ∨ m = 0,

δ(m+n)
[ε1,ε2] + (−1)n δ(m−n)

[ε2,ε′
1] − (−1)m δ(n−m)

[ε1,ε′
2] if n,m �= 0 .

(3.162)

The first term represents the commutation relations of a loop algebra, which is the
symmetry algebra of principal chiral models. The additional terms can be simplified
if we fix the condition g0 = 1, such that ε′ = Phε − Pmε. Discriminating the cases
εi ∈ h and εi ∈ mone then reaches the following commutation relations for n,m �= 0:

[
δ(n)
ε1

, δ(m)
ε2

]
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ(m+n)
[ε1,ε2] − (−1)n δ(m−n)

[ε1,ε2] − (−1)m δ(n−m)
[ε1,ε2] ε1 ∈ h, ε2 ∈ h ,

δ(m+n)
[ε1,ε2] − (−1)n δ(m−n)

[ε1,ε2] + (−1)m δ(n−m)
[ε1,ε2] ε1 ∈ h, ε2 ∈ m ,

δ(m+n)
[ε1,ε2] + (−1)n δ(m−n)

[ε1,ε2] − (−1)m δ(n−m)
[ε1,ε2] ε1 ∈ m, ε2 ∈ h ,

δ(m+n)
[ε1,ε2] + (−1)n δ(m−n)

[ε1,ε2] + (−1)m δ(n−m)
[ε1,ε2] ε1 ∈ m, ε2 ∈ m .

(3.163)

If the additional terms with varying signs were absent, the symmetry algebra would
be half of a loop algebra Ĝ. Due to the dependence of the signs on the discrimination
between h andm, Schwarz denotes the symmetry of symmetric space models by ĜH

in Ref. [22].
For the commutator of the higher master and Yangian-like variations, we find

[̂
δ(n), δ(m)

ε

] = −m δ(m+n+1)
ε + (−1)mm δ(n+1−m)

ε′ − (−1)nm δ(m−n−1)
ε . (3.164)

We observe that all of the higher master variations commute with the generators δε of
the G-symmetry. Moreover, the raising operator structure observed for the action of
the master variation δ̂ on the conserved charges is also present. Given the variations
δ(1)
ε and δ̂ all of the higherYangian-like variations follow from the above commutation
relations.

The commutator of two higher master variations can be shown to take the form
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[̂
δ(n), δ̂(m)

] = (n − m) δ̂(n+m+1) + (−1)m(n + m + 2) δ̂(n−m−1)

− (−1)n(m + n + 2) δ̂(m−n−1) . (3.165)

Note that the knowledge of the first two generators δ̂ and δ̂(1) is sufficient to construct
all of the higher master symmetry generators as it is the case for the Yangian-like
variations δε and δ(1)

ε as well.
The algebra of the nonlocal symmetries of symmetric space models has been

discussed by Schwarz in Ref. [22], who obtained the symmetry transformations by
generalizing the known nonlocal symmetries of principal chiral models, which had
been obtained in Refs. [12, 19, 20, 23]. He described two types of nonlocal sym-
metries. The first one corresponds to the Yangian-like symmetry δε,u . The second is
named “Virasoro-like” by Schwarz, since the algebraic properties of its generators
resemble those of linear combinations of Virasoro generators. It is similar to the
higher master variations δ̂u .

In order to put Schwarz’ Virasoro symmetry into the context of our discussion, we
note that he uses the following variation for the Virasoro-like symmetries (translated
to the conventions used within this thesis)

δV,u g = (
(1 + u2)χ−1

u χ̇u − χ(0)
)
g = χ−1

u

(
δ̂χu

)
g =: ηV,u g . (3.166)

The above symmetry action is the natural symmetric space generalization of the
nonlocal symmetries of the principal chiral model discussed in the same paper. Let
us compare this to the variation (3.129), which is given by

δ̂ug = χ−1
u χ̇u g =: ηu g . (3.167)

We see that the two variations are related by

δV,u g = (
(1 + u2)̂δu − δ̂

)
g . (3.168)

Themaster symmetry δ̂ is thus absent in the discussion of Schwarz since the variation
δV,u becomes trivial in the limit u → 0. Note also that the variation δ̂ cannot be
extracted for u ∈ C at u2 = −1 since χu has poles at these points. In fact, there is
a simple argument which shows that δ̂ is not contained in the family of variations
given by (3.166). Since the variation δV,u is of the form χ−1

u δ0χu , the proof given in
Sect. 3.6.1 shows that

d ∗ (
dηV,u + [

j, ηV,u
]) = 0 , (3.169)

which can also be seen from the proof given in Ref. [22]. In contrast, the variation δ̂
only satisfies the necessary condition (3.97), since

g−1d ∗ (
dχ(0) + [

j,χ(0)]) g = −4 a ∧ a ∈ h . (3.170)
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In the case of the principal chiral model, Schwarz gives an interpretation of the
analogue of the algebra given by the commutation relations (3.165). He shows that
the respective generators can be related to half of a Virasoro algebra by considering
suitable linear combinations and thus refers to this symmetry as “Virasoro-like”. In
the case of symmetric space models and for the variations δ̂(n), a similar relation to
the Virasoro algebra seems not to be present.

3.7.2 The Algebra of the Charges

In this section, we discuss the Poisson algebra of the conserved charges associated to
the nonlocal symmetries of symmetric space models. We find that up to ambiguous
boundary terms, which commonly appear in the study of such Poisson algebras [25],
the Poisson algebra of the charges Q(n) is given by the classical analogue of aYangian
algebra. Similar results hold for principal chiral andGross–Neveumodels [24]. Since
the form of the current algebra for symmetric space models is close to the one of
principal chiral models, the analysis is simplified and many of the results of Ref. [24]
can be transferred. As the charges associated to the master symmetry turn out to
be compositions of the Yangian charges, their Poisson algebra is inherited from
the latter. For convenience, the calculations within this subsection are performed
in components instead of differential forms. Also, in order to be compatible with
Ref. [24], we switch to a field theory point of view in this subsection. That is, we
view the symmetric spacemodel to describe the internal degrees of freedom of a two-
dimensional field theory rather than the target space of a string theory. In particular,
the conserved charges are integrated over an infinite line rather than a closed cycle.
In order to emphasize this point, we also switch the notation from (τ ,σ) to (t, x)
within this subsection.

The Poisson algebra of the conserved charges of symmetric space models can be
obtained from the respective algebra for principal chiral models, which was derived
in Ref. [24]. We have introduced principal chiral models in Sect. 3.5. The action can
be written as

S = −T

2

∫
tr ( j ∧ ∗ j) , (3.171)

where j = g−1dg is the Noether current corresponding to the G-symmetry of left-
multiplication. The components of the the Noether current,

j (t, x) = j a0 (t, x) Ta dt + j a1 (t, x) Ta dx,

are constrained by the fact that the current is both flat and conserved,

∂t j
a
0 + ∂x ja1 = 0 , ∂t j

a
1 − ∂x ja0 + f abc j b0 j c1 = 0 . (3.172)
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Here, f abc denote the structure constants of the generators Ta ,

[Ta, Tb] = f c
ab Tc .

The Poisson brackets for the components of the Noether current were derived in
Ref. [26] by regarding qa = j a1 as generalized coordinates. Due to the flatness of the
Noether current, the time derivatives of the coordinates can be expressed as

∂t q
a = ∂x j

a
0 + f abc q

b j c0 = (D j0)
a , (3.173)

and the conjugate momenta can be identified as

πa = − (
D−1 j0

)a
. (3.174)

The Poisson algebra for the Noether current can then be derived from the canonical
Poisson brackets for the variables πa and qa and is found as

{
j a0 (t, x) , j b0 (t, y)

}
PCM = fabc j c0 (t, x) δ(x − y) ,{

j a0 (t, x) , j b1 (t, y)
}
PCM = fabc j c1 (t, x) δ(x − y) + Gab ∂xδ(x − y) , (3.175){

j a1 (t, x) , j b1 (t, y)
}
PCM = 0 .

Here, Gab = tr
(
T aT b

)
denotes the metric on the group G. Moreover, following

the conventions introduced in Sect. 2.1, we are using the structure constants of the
symmetry variations here,

[ta, tb] = fabc tc , fabc = fba
c . (3.176)

The metric Gab, which we use lower the group indices, is the same for the generators
Ta and ta .

It is tempting to transfer the above algebra for the Noether currents to symmetric
space models, since the action of these models can also be written in the form
(3.171) employing the Noether current of symmetric space models, which is flat and
conserved as well. Note however, that in the case of symmetric space models the
Noether current j has dim(g) components corresponding to only dim(m) degrees
of freedom, such that the components are not independent and should hence not be
considered as a set of generalized coordinates. The above Poisson algebra for the
components of theNoether current can hence not be transferred directly to symmetric
space models.

The Poisson algebra of the Noether currents for symmetric space models was
derived in a different approach in Ref. [27]. They found the Poisson-brackets
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{
j a0 (t, x) , j b0 (t, y)

}
SSM = fabc j c0 (t, x) δ(x − y) , (3.177){

j a0 (t, x) , j b1 (t, y)
}
SSM = fabc j c1 (t, x) δ(x − y) + kab(t, y) ∂xδ(x − y) , (3.178){

j a1 (t, x) , j b1 (t, y)
}
SSM = 0 . (3.179)

Here, the quantity kab is given by

kab = tr
(
T ak

(
T b

)) = tr
(
Pm

(
g−1T ag

)
Pm

(
g−1T bg

))
, (3.180)

with k : g → g being a map from g to itself defined by

k = Ad(g) ◦ Pm ◦ Ad(g)−1 , k(X) = gPm
(
g−1Xg

)
g−1 . (3.181)

The map k is related to the Noether current j by the relations

ad( jμ) = k ◦ ad( jμ) + ad( jμ) ◦ k , j cμ fc
ab = j cμ

(
fc
adkd

b − fc
bdkd

a
)

, (3.182)

which follow from a short calculation:

(
k ◦ ad( jμ) + ad( jμ) ◦ k

)
(X) = gPm

(
g−1 [

jμ, X
]
g
)

g−1 +
[
jμ, gPm

(
g−1Xg

)
g−1

]

= gPm
([

−2aμ, g−1Xg
])

g−1 + g
[
−2aμ, Pm

(
g−1Xg

)]
g−1

= g
([

−2aμ, Ph
(
g−1Xg

)
+ Pm

(
g−1Xg

)])
g−1 = [

jμ, X
]

.

The Poisson algebra closes if one includes kab(t, x). The additional Poisson brackets
take the form

{
j a0 (t, x) , kbc(t, y)

}
SSM = (

fabd kdc(t, x) + facd kdb(t, x)
)
δ(x − y) ,{

j a1 (t, x) , kbc(t, y)
}
SSM = 0 , (3.183){

kab(t, x) , kcd(t, y)
}
SSM = 0 .

Yangian charges. Given the above Poisson brackets for the components of the
Noether current, we turn to the calculation of the Poisson brackets of the conserved
charges Q(n), for which we note the explicit expressions

Q(0) a =
∞∫

−∞
dx ja0 (t, x) ,

Q(1) a = facb

∞∫
−∞

dx1dx2 θ(x2 − x1) j
b
0 (x1) j

c
0 (x2) + 2

∞∫
−∞

dx ja1 (x) . (3.184)
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We now demonstrate that the Poisson algebra of these charges represents the classical
counterpart of a Yangian algebra, i.e. that the charges satisfy the relations

{
Q(0) a , Q(0) b

} = fabc Q(0) c ,
{
Q(0) a , Q(1) b

} = fabc Q(1) c , (3.185)

as well as the classical counterpart of the Serre relations:

fd
[ab {

Q(1)c] , Q(1)d} = 1
2 f

a
ip fb jq fckr f i jk Q(0)p Q(0)q Q(0)r . (3.186)

For the Gross–Neveu and the principal chiral model, the Serre relations for the
conserved charges were shown byMacKay [24]. Due to the similarity of the Poisson
brackets for the principal chiral and symmetric space model, the most part of the
calculation for the symmetric spacemodel has already been performed there. In order
to show that the result can be transferred, we only need to evaluate the difference in
the Poisson brackets, which can be done by employing the following notation:

{
j a0 (t, x) , j b0 (t, y)

}
SSM−PCM = 0 ,{

j a0 (t, x) , j b1 (t, y)
}
SSM−PCM = (

kab(t, y) − Gab
)

∂xδ(x − y) , (3.187){
j a1 (t, x) , j b1 (t, y)

}
SSM−PCM = 0 .

We begin by studying the Poisson bracket between a level-0 and a level-1 charge.
The calculation of this bracket gives rise to boundary terms, which depend on the
precise way in which the upper and lower integration boundaries are taken to infinity
in (3.184), cf. Ref. [25]. They arise for both the principal chiral and symmetric space
model from integrating out the ∂xδ(x − y) contributions. The problem stems from
the fact that both Gab and kab are not suitable test functions as they do not vanish
when x approaches infinity.

In order to keep the discussion general for the moment, we consider the charges
Q(0) and Q(1) with the following boundaries:

Q(0) a =
L2∫

−L1

dx ja0 (x) (3.188)

Q(1) a = facb

L4∫
−L3

dx1dx2 θ(x2 − x1) j
b
0 (x1) j

c
0 (x2) + 2

L6∫
−L5

dx ja1 (x) . (3.189)

Since the Poisson bracket of two 0-components of the Noether current j is the same
as in the case of the principal chiral model (see (3.187)), the Lie algebra commutator
for the level-0 charges follows trivially. For the Poisson bracket of a level-0 with a
level-1 charge we find
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{
Q(0) a , Q(1) b

}
SSM−PCM =

L2∫
−L1

dx

L6∫
−L5

dy
(
kab(y) − Gab

)
∂xδ(x − y)

=
L6∫

−L5

dy
(
kab(y) − Gab

)
(δ(L2 − y) − δ(−L1 − y))

= (
kab(L2) − Gab

)
θ(L6 − L2) − (

kab(−L1) − Gab
)
θ(L5 − L1). (3.190)

The result shows the difference between the boundary terms for the principal chiral
and symmetric space model. In the case of the principal chiral model, it has been
noted in Ref. [24] that the ambiguous boundary terms disappear if one sets the
upper and lower boundaries equal, L1 = L2 and L5 = L6. This prescription is not
sufficient in the case of the symmetric space model, since kab(L1) generically differs
from kab(−L1). For the boundary terms to disappear — and the Yangian algebra to
be satisfied — we have to require L1 > L5 and L2 > L6.

In order to study the Serre relations (3.186) next, let us now turn to the Poisson
bracket of two level-1 charges Q(1) a . Making use of Eq. (3.187), we find

{
Q(1) a, Q(1) b

}
SSM−PCM =

L4∫
−L3

dx1dx2 θ(x2 − x1)

L6∫
−L5

dx3×

×
[
fadc

{
j c0 (x1) j

d
0 (x2), j

b
1 (x3)

}
SSM−PCM + fbdc

{
j a1 (x3), j

c
0 (x1) j

d
0 (x2)

}
SSM−PCM

]

=
L4∫

−L3

dx1dx2 ε(x2 − x1)

L6∫
−L5

dx3
[
j c0 (x1)

(
fadc

(
kdb(x3) − Gdb

)

− fbdc
(
kda(x3) − Gda

) )
∂x2 δ(x2 − x3)

]
, (3.191)

where we defined ε(x2 − x1) = θ(x2 − x1) − θ(x1 − x2) in the last line. Integrating
by parts gives the boundary term

Bab =
(
fadc

(
(kdb(L4) − Gdb)θ(L6 − L4) + (kdb(−L3) − Gdb)θ(L5 − L3)

)

− fbdc
(
(kda(L4) − Gda)θ(L6 − L4) + (kda(−L3) − Gda)θ(L5 − L3)

) )
Q(0) c .

(3.192)

Again, the result shows the difference between the boundary terms arising for the
principal chiral and the symmetric space model. In the case of a principal chiral
model, the boundary terms are not relevant for the Serre relations due to the Jacobi
identity fb[cd fa]b

e = 0. The situation is different for a symmetric space model, where
the above result shows that generically we have
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fb[cd Ba]b �= 0 , (3.193)

such that the Serre relations (3.186) are violated by the boundary terms. We must
hence require L4 > L6 and L5 > L3 in order for the Yangian algebra to hold true.
In this case, the boundary terms are absent and we only have the bulk term, which
takes the following form after taking Li to infinity in the appropriate order:

{
Q(1) a, Q(1) b

}
SSM−PCM = −2

∫
dx jc0 (x)

(−2fabc + fcadkdb(x) − fcbdkda(x)
)

= 2 fabc Q(0) c. (3.194)

Here, we have used the relation (3.182) to eliminate the terms involving k. Hence,
the difference to the result for the principal chiral model is given by a term which
drops out of the Serre relations. We can thus conclude that the Serre relations for
symmetric space models are satisfied if a particular ordering prescription is chosen
for taking the boundaries of the integration domains to infinity. TheYangian relations
for a symmetric space model can hence be understood to fix a limit-ambiguity in the
definition of the charges. The situation is thus slightly different from the principal
chiral model, where the order of L4, L6 and L3, L5 is not relevant to establish the
Serre relation.

Master charges. The conserved charges associated with the master symmetry are
compositions of theYangian charges, see e.g. Table3.1. Hence, the respective algebra
relations are inherited from the Yangian algebra. For instance, the level-0 Yangian
charge Q and the level-1master charge Q̂(1) = tr

(
Q Q(1)

)
given in (3.126), commute

due to (3.185):

{Qa, Q̂
(1)} = Qb{Qa, Q

(1)
b } + {Qa, Q

b}Q(1)
b = 0. (3.195)
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Chapter 4
Minimal Surfaces in AdS

We now turn to the discussion of minimal surfaces in Anti-de Sitter spaces of various
dimensions, which all arise as submanifolds of AdS5. Since AdSN is a symmetric
space, we can apply the symmetries discussed in the previous chapter. We begin by
showing that a given symmetry of the area functional also leaves the renormalized
area appearing in the strong-coupling description of the Maldacena–Wilson loop
invariant. The symmetries of the area functional discussed in the last chapter are
thus also symmetries of the Maldacena–Wilson loop. In order to gain further insight
into these symmetries, we study their action on the boundary curves directly. As
a prerequisite for this, we discuss the coset parametrization for AdSN in detail in
Sect. 4.2.

We then turn to the study of large master symmetry transformations in Sect. 4.3.
The calculation of the master symmetry transformation requires the knowledge of
the minimal surface and the analysis is thus limited to cases, where a minimal surface
solution is known. We discuss the four-cusp solution in detail, which is of particular
interest, since it describes the four-gluon scattering amplitude at strong coupling.
Generic minimal surfaces can be treated numerically and we recall some of the
numerical results found in Ref. [1].

The variations of the boundary curve can again be studied analytically and we
derive the variations of a generic boundary curve under the master and level-1
Yangian-like symmetry in Sect. 4.4. We make contact with the results of Ref. [2],
where the vanishing of the level-1 charge Q(1) was used to derive the Yangian sym-
metry of the Maldacena–Wilson loop at strong coupling.

4.1 Symmetry and Renormalization

We have seen in Sect. 2.4 that the Maldacena–Wilson loop at strong coupling is
described by the renormalized area of the minimal surface ending on the respec-
tive boundary curve. It is then natural to ask whether also the renormalized area is
invariant under the master symmetry. In fact, we show that any symmetry of the
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102 4 Minimal Surfaces in AdS

area functional and the equations of motion is also a symmetry of the renormalized
minimal area Aren(γ). The proof given below is an adaptation of the proof of the
conformal invariance of the renormalized minimal area which is briefly1 described
in Ref. [3].

An important tool in the argument is the known expansion of the minimal surface
around the conformal boundary,whichwas first derived inRefs. [4, 5]. The expansion
can be derived from the equations of motion and Virasoro constraints by treating the
boundary value problemas an initial value problem in the τ -coordinate and expanding
around the boundary located at τ = 0. The boundary conditions are given by

Xμ(τ = 0,σ) = xμ(σ) , y(τ = 0,σ) = 0 . (4.1)

Since the equations ofmotion are second-order differential equations, they are under-
determined as an initial value problem. Hence, we do not expect that the equations
of motion allow to fix all coefficients of the τ -expansion. The expansion would
be determined completely, if one provided the conjugate momentum δA/δxμ(σ).
For the minimal surface problem, the conjugate momenta are determined from the
requirement that theminimal surface closes,which cannot be studied in the expansion
around the conformal boundary. The conjugatemomentumwould usually be given by
the first coefficient in the τ -expansion and all higher coefficientswould be determined
in terms of it. The situation is different for minimal surfaces in AdS due to the
divergence of themetric on the conformal boundary,which forces theminimal surface
to leave the boundary perpendicularly.

For the determination of the Polyakov–Rychkov expansion we fix conformal
gauge, such that the area functional takes the form

A = 1

2

∫
dτ ∧ dσ

∂i Xμ∂i Xμ + ∂i y ∂i y

y2
. (4.2)

The equations of motion are then given by

∂2Xμ − 2 ∂i Xμ ∂i y

y
= 0 , ∂2y + (∂X)2 − (∂y)2

y
= 0 , (4.3)

and we note the Virasoro constraints

(∂τ X) (∂σX) + ∂τ y ∂σ y = 0 , (∂τ X)2 + (∂τ y)
2 − (∂σX)2 − (∂σ y)

2 = 0 . (4.4)

With these equations at hand, we turn to the determination of the τ -expansion. We
fix the following convention for the τ -expansion of a generic function f (τ ,σ):

1I would like to thank Harald Dorn for sharing his notes on that proof with me.
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f (τ ,σ) =
∞∑

n=−m

f(n)(σ) τ n . (4.5)

Here, we have allowed for a Laurent-expansion, which appears e.g. for the Noether
current. The parametrization of the minimal surface is not divergent in the limit
τ → 0 and from the equations of motion we find the coefficients

Xμ
(1)(σ) = 0 , Xμ

(2)(σ) = 1

2
ẋ2(σ) ∂σ

(
ẋμ(σ)

ẋ2(σ)

)
, (4.6)

y(1)(σ) = |ẋ | , y(2)(σ) = 0 . (4.7)

The third-order coefficients are not fixed by the equations of motion. From our
above discussion we thus expect that the third-order coefficient of Xμ is related to
the functional derivative of the minimal area. We hence consider a variation δxμ(σ)

of the boundary curve. The variation of the boundary curve induces a variation
(δXμ, δy) of the parametrization of the minimal surface. Let us then compute the
variation of the renormalized minimal area,

Aren(γ) = lim
ε→0

{
A(γ)

∣∣
y�ε

− L(γ)

ε

}
, (4.8)

which is regulated by demanding y � ε, or equivalently τ � τ0(σ), where τ0(σ) is
defined by y(τ0(σ),σ) = ε, which we can rewrite as

τ0(σ) = ε

|ẋ(σ)| + O(ε3), (4.9)

employing the coefficients of y derived above. Sincewe are varying around aminimal
surface solution, we may employ that (Xμ, y) satisfy the equations of motion and
hence the variation is given by a boundary term,

δA
∣∣
y�ε

=
2π∫

0

dσ

c∫

τ0(σ)

dτ ∂i
∂i Xμ δXμ + ∂i y δy

y2
= 1

ε2

2π∫

0

dσ
[
τ ′
0(σ) ∂σX

μδXμ − ∂τ X
μδXμ

]
.

Here, we used that δy(τ0(σ),σ) = 0 due to the definition of τ0 and employed the
periodicity of the solutions in σ. Inserting the results (4.7) we then find

δA
∣∣
y�ε

= δL(γ)

ε
−

2π∫

0

dσ
3Xμ

(3)

ẋ2
δxμ ,

from which we read off that
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Xμ
(3)(σ) = − ẋ2

3

δAren(γ)

δxμ(σ)
. (4.10)

To fix the higher coefficients in the τ -expansion, it is convenient to restrict the
parametrization of the boundary curve to satisfy ẋ2 ≡ 1. The residual reparametriza-
tion invariance in conformal gauge is sufficient to do so. We have worked with a
general parametrization so far to avoid possible problems in calculating the variation
above. In the text below, we will indicate working with an arc-length parametriza-
tion by using boundaries [0, L(γ)] for the variable σ, whereas we use the boundaries
[0, 2π] for generic parametrizations.

The third-order coefficient of y(τ ,σ) can be obtained from the Virasoro con-
straints, which gives

y(3)(σ) = − ẍ(σ)2

3
. (4.11)

The fourth-order coefficient of Xμ(τ ,σ) can also be obtained from the equations
of motion, but we will not need it for our analysis. In summary, we have found the
following expansion for the minimal surface solutions:

Xμ (τ ,σ) = xμ(σ) + τ 2

2
ẋ2(σ) ∂σ

(
ẋμ(σ)

ẋ2(σ)

)
− τ 3

3
ẋ2(σ)

δAren(γ)

δxμ(σ)
+ O (

τ 4) ,

y (τ ,σ) = τ |ẋ(σ)| + O(τ 3) .

If we choose an arc-length parametrization, the above expansion simplifies to

Xμ (τ ,σ) = xμ(σ) + τ 2

2
ẍμ(σ) − τ 3

3

δAren(γ)

δxμ(σ)
+ O (

τ 4
)
, (4.12)

y (τ ,σ) = τ − τ 3

3
ẍ(σ)2 + O(τ 4) . (4.13)

With the above expansion established, we can now turn to the question whether a
generic symmetry of the area functional leads to a symmetry of the renormalized
minimal area. Since we are considering a symmetry transformation, the transformed
surface {X̃μ(τ ,σ), ỹ(τ ,σ)} ending on the transformed boundary contour γ̃ is also a
solution of the equations of motion in conformal gauge and thus we have

X̃μ(τ ,σ) = x̃μ(σ) + O(τ 2) , ỹ(τ ,σ) = τ | ˙̃x(σ)| + O(τ 3) .

Wenote now that the cut-off of the original surface at y = ε is not necessarilymapped
to the cut-off of the transformed surface, which is situated at ỹ = ε, see Fig. 4.1.
In parameter space, the cut-off of the transformed surface corresponds to τ̃0(σ),
where we have again defined ỹ (τ̃0(σ),σ) = ε. Using now that we are discussing a
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Fig. 4.1 Comparison of the minimal surfaces associated to the boundary curves γ and γ̃

symmetry of the area functional, the transformed surface covers the same area in a
given parameter region, i.e. we have

Amin(γ)
∣∣
τ�τ0(σ)

= Amin(γ̃)
∣∣
τ�τ0(σ)

.

Correspondingly, the difference between the minimal areas for the original curve γ
and the transformed curve γ̃ is given by integrating over the surface between the two
cut-offs situated at τ0(σ) and τ̃0(σ),

Amin(γ)
∣∣
y�ε

− Amin(γ̃)
∣∣
ỹ�ε

= 1

2

2π∫

0

dσ

τ̃0(σ)∫

τ0(σ)

dτ
∂i X̃μ∂i X̃μ + ∂i ỹ∂i ỹ

ỹ2

=
2π∫

0

dσ

τ̃0(σ)∫

τ0(σ)

dτ

(
1

τ 2
+ O(τ 0)

)

=
2π∫

0

dσ
|ẋ(σ)|

ε
−

2π∫

0

dσ
| ˙̃x(σ)|

ε
+ O(ε) = L(γ)

ε
− L(γ̃)

ε
+ O(ε) . (4.14)
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Inserting the definition (4.8) of the renormalized minimal area, we thus find that it
is invariant under the map γ �→ γ̃ induced by any symmetry of the model.

4.2 Coset Space Construction

In order to transfer the symmetries discussed in Chap. 3, we describe AdSd as a coset
space and introduce a particular set of coset representative, which will be convenient
later on. We begin with the space AdS3, which is special since it can be identified
with the Lie group SL(2,R). Generically, the coset spaces G/H cannot be equipped
with a group structure. We then turn to the coset space construction for the higher-
dimensional AdS-spaces, considering both Euclidean and Lorentzian signature. The
isometry groups are given by SO(2, d − 1) or SO(1, d), respectively, and we have
the coset spaces

AdSd � SO(2, d − 1)/SO(1, d − 1) , EAdSd � SO(1, d)/SO(d) . (4.15)

Due to the gauge freedom, there are different ways to describe the above spaces by
choosing a set of coset representatives on G. In order to read off the corresponding
point on M = G/H from an element of G without first determining to which coset
representative it is related by a gauge transformation, one can employ the gauge-
invariant quantity given by

G = σ(g) g−1 . (4.16)

The gauge invariance follows directly from the fact that σ acts as the identity on H.
Note also that G is related to the Noether current (which is also gauge-invariant) by

j = G
−1dG . (4.17)

4.2.1 The Group Manifold for AdS3

The identification of AdS3 with the Lie group SL(2,R) is easiest to describe in
embedding coordinates, where we map R(2,2) to GL(2,R) by

(Z−1, Z0, Z1, Z2) �→
(
Z−1 + Z2 Z1 + Z0

Z1 − Z0 Z−1 − Z2

)
= g(Z) . (4.18)

With this identification, we have

det(g(Z)) = 1 ⇔ −Z2
−1 − Z2

0 + Z2
1 + Z2

2 = −1 , (4.19)
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such that AdS3 is identified with SL(2,R). It is then easy to see that left and right
multiplication by elements of SL(2,R) give isometries of AdS3. As we have seen in
Sect. 2.3, the embedding coordinates for AdS3 are related to Poincaré coordinates by

Z0 = X0

y
, Z−1 + Z2 = 1

y
,

Z1 = X1

y
, Z−1 − Z2 = y2 + X2

1 − X2
0

y
, (4.20)

and hence the identification of AdS3 with SL(2,R) takes the following form in
Poincaré coordinates:

g(X, y) = 1

y

(
1 X1 + X0

X1 − X0 y2 + X2
1 − X2

0

)
. (4.21)

We can then convince ourselves that the trace on SL(2,R) reproduces the AdS-
metric. With Ui = g−1∂ig, we find

tr
(
Ui U j

) = 2
∂i X1 ∂ j X1 − ∂i X0 ∂ j X0 + ∂i y ∂ j y

y2
. (4.22)

We can hence describe string theory in AdS3 as the principal chiral model on
SL(2,R),

S = −T

4

∫
tr (U ∧ ∗U ) . (4.23)

This is of course equivalent to the description as the symmetric space model on
SL(2,R) × SL(2,R)/SL(2,R). The description as a principal chiral model is more
convenient in our case due to the absence of the three gauge degrees of freedom.
We have seen in Sect. 3.5 that the master symmetry can be formulated also for these
models.

4.2.2 The Coset Space for AdSd

For the higher-dimensional AdS-spaces, we employ a coset construction based on the
respective isometry groups. We have discussed our conventions for the fundamental
representations of the isometry groups SO(2, d − 1) and SO(1, d) in Sect. 2.1 and
we recall the commutation relations

[
Mμν, Mρσ

] = ημρMνσ − ημσMνρ + ηνσMμρ − ηνρMμσ , (4.24)

as well as
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[
D, Pμ

] = Pμ ,
[
Mμν , Pλ

] = ημλPν − ηνλPμ ,
[
Pμ, Kν

] = 2ημν D − 2Mμν ,[
D, Kμ

] = −Kμ ,
[
Mμν , Kλ

] = ημλKν − ηνλKμ . (4.25)

For the trace metric, we recall the expressions

tr
(
MμνMρσ

) = 2 ημσ ηνρ − 2 ημρ ηνσ , tr
(
Pμ Kν

) = 4 ημν , tr (D D) = 2 , (4.26)

and the Z2 grading of the algebra led to the decomposition

h = span
{
Mμν, Pμ − Kμ

}
, m = span

{
Pμ + Kμ, D

}
. (4.27)

The Lie algebra h of the gauge group is isomorphic to so(d) or so(1, d − 1), respec-
tively. A convenient choice of coset representatives is given by

g(X, y) = eX ·P yD ⇒ U = g−1 dg = dXμ

y
Pμ + dy

y
D , (4.28)

and for the projections of the Maurer–Cartan form, we note

A = dXμ

2y

(
Pμ − Kμ

)
, a = dXμ

2y

(
Pμ + Kμ

) + dy

y
D . (4.29)

The metric of the coset space is obtained from the group metric introduced above
and the projection a of the Maurer–Cartan form as

tr
(
ai a j

) = 2
ημν∂i Xμ ∂ j Xν + ∂i y ∂ j y

y2
. (4.30)

This shows that the parametrization g(X, y) provides Poincaré coordinates for
EAdSN or AdSN , respectively. Correspondingly, we may describe the string action
in these coordinates by

S = −T

4

∫
tr (a ∧ ∗a) . (4.31)

In order to get acquainted with our above choice of coset representatives, we derive
the coordinate expressions for the G-Symmetry of the model. The transformations
are described by left-multiplication of the coset representatives by a constant L ∈ G,

g (X, y) �→ L · g (X, y) = g
(
X ′, y′) · R . (4.32)

Here,we need to allow for a general gauge transformation R ∈ H.For an infinitesimal
transformation, we replace L by the generators Ta of G, which implies the variation
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∂μg (X, y) δa X
μ + ∂yg (X, y) δa y = Ta · g (X, y) − g (X, y) · ha , (4.33)

where ha ∈ h is an element of the gauge Lie algebra. A more convenient expression
in order to read off the variations (δa Xμ, δa y) is given by the components of the
Maurer–Cartan form,

Uμδa X
μ +Uyδa y = g (X, y)−1 · Ta · g (X, y) − ha . (4.34)

Inserting Eq. (4.28), we thus have

δa X
μ Pμ + δa y D = y

(
g (X, y)−1 · Ta · g (X, y) − ha

)
. (4.35)

As the right hand side of this equation only contains the generators Pμ and D, the
gauge transformation ha can be determined from the terms proportional to Kμ and
Mμν in g−1Tag, which gives

ha = 1

4
tr

(
g−1Ta g Pμ

) (
Kμ − Pμ

) − 1

4
tr

(
g−1Ta g Mμν

)
Mμν .

Using the expressions (4.26) for the group metric we then have

δa X
μ = y

4

(
tr

(
g−1Tag K μ

) + tr
(
g−1Tag Pμ

))
,

δa y = y

2
tr

(
g−1Tag D

)
. (4.36)

We are particularly interested in the variation of the coordinates xμ at the conformal
boundary y = 0. In order to take the boundary limit y → 0, we employ the definition
of g(X, y) as given in (4.28) and compute the conjugation of any generator with yD .
This can be done by noting that our choice of basis is such that the commutation
with D is diagonal,

[D, Ta] = �(Ta) Ta , (4.37)

which implies that

yD Ta y
−D = y�(Ta) Ta . (4.38)

The above relation follows from a simple application of Hadamard’s lemma. With
the n-fold commutator defined by [A, B](n) = [A, [A, B](n−1)] and [A, B](0) = B,
we have
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yD Ta y
−D = eln(y)D Ta e

− ln(y)D =
∞∑
n=0

1

n!
[
ln(y)D, Ta

]
(n)

=
∞∑
n=0

(ln(y)� (Ta))
n

n! Ta = y�(Ta) Ta .

Using the cyclicity of the trace in (4.36) as well as �(K μ) = −1, �(Pμ) = 1 and
�(D) = 0, we thus have

δa y
y→0−→ 0 ,

which ensures that AdS-isometries map the conformal boundary to itself and the
variation of the boundary coordinates is given by

δax
μ = 1

4
tr

(
e−x ·PTa ex ·P K μ

) = ξμ
a (x) . (4.39)

Here, ξμ
a (x) form a basis of conformal Killing vectors of the flat boundary space, as

expected. Concretely, we find the expressions

ξμ
a (x) = {

δμ
ν , xνδ

μ
ρ − xρδ

μ
ν , xμ, x2δμ

ν − 2xμxν

}
(4.40)

for the generators

Ta = {
Pν, Mνρ, D, Kν

}
. (4.41)

We note that the conformal Killing vectors ξ
μ
a (x) satisfy the algebraic identities

{ξa, ξb}μ = ξν
a∂ν ξ

μ
b − ξν

b∂ν ξμ
a = fba

c ξμ
c = fabc ξμ

c . (4.42)

Here, as before, fabc denote the structure constants of the underlying Lie group
SO(1, N ) or SO(2, N − 1) in the basis of the generators Ta ,

[Ta, Tb] = fab
c Tc , (4.43)

and fabc denote the structure constants of the symmetry variations. Moreover, the
vectors ξ

μ
a (x) satisfy the conformal Killing equation

∂μξν
a + ∂νξμ

a = 1
2

(
∂ρ ξρ

a

)
ημν . (4.44)
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4.3 Large Symmetry Transformations

We now turn to the discussion of large symmetry transformations for the circular and
four-cusp solution.

4.3.1 Analytical Deformations

The circular solution. The simplest minimal surface in Euclidean Anti-de Sitter
space is the minimal surface for the boundary curve being a circle, which we have
already discussed in Sect. 2.4.We recall that theminimal surface can be parametrized
(in conformal gauge) by

X1(τ ,σ) = cosσ

cosh τ
, X2(τ ,σ) = sin σ

cosh τ
, y(τ ,σ) = tanh τ . (4.45)

The master symmetry deformation of this minimal surface was found in Ref. [6] to
be given by an AdS-isometry. This finding can be explained by the fact that the circle
is a contour, for which the mapping between the boundary curve and the area of the
associated minimal surface reaches a minimum. In order to see this, note that we
have already calculated the variation of the renormalized minimal area for generic
variations of the boundary curve in Eq. (4.10), where we found that

δAren(γ) = −
2π∫

0

dσ
3Xμ

(3)

ẋ2
δxμ . (4.46)

Expanding the above minimal surface solution around the boundary τ = 0, we see
that the variation around the circle vanishes,

(4.47)

This suggests that the master symmetry deformation — which leaves the renormal-
ized area invariant— should not lead to a differentminimal surface, i.e. one that is not
related to the original surface by anAdS-isometry and a reparametrization. The above
finding is not quite sufficient to prove that there are no minimal surfaces with the
same area as the circular one, since we cannot exclude the possibility of degenerate
minimal boundary curves which are not related by conformal transformations.

The four-cusp solution. Another example of an analytically-knownminimal surface
is the four-cusp solution discussed in Ref. [7]. The four-cusp solution is of particular
interest here since it describes the four-gluon scattering amplitude at strong coupling.
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For anyminimal surface ending on a light-like polygon, it is an interesting question
whether the master symmetry again yields a light-like polygonal boundary curve
and thus relates gluon scattering amplitudes at strong coupling. Since the minimal
surfaces for polygons with more than four edges are not known analytically, the four-
cusp solution is a natural starting point to address this question. One should point
out, however, that conformal symmetry is very restrictive for light-like polygons
with less than six edges, since no conformal cross ratios can be formed. This implies
that all light-like polygons with four edges are related by conformal transformations.
Hence, if the master symmetry maps the minimal surfaces for light-like polygons to
such, it will be equivalent to an AdS-isometry in the case of the four-cusp solution.

Before we turn to the discussion of the master symmetry, let us briefly discuss the
four-cusp solution. Interestingly, it is quite similar to the circular minimal surface in
Euclidean AdS3. Defining r2 = X2

1 + X2
2, the solution for the circular Wilson loop

can be written as

y(r) =
√
R2 − r2 , (4.48)

for a circlewith radius R, whichwe have set to one before. It is plausible to expect that
the minimal surface ending on the hyperbola in Minkowski space can be obtained
from the solution above. If we formally adapt the above solution, we obtain the
parametrization

X0(σ, r) = r cosh σ , X1(σ, r) = r sinh σ , y(σ, r) =
√
r2 − R2 , (4.49)

ending on the hyperbola defined by X2
0 − X2

1 = R2. Let us check that the above
parametrization gives a solutions of the equations of motion. Assuming that y is a
function only of r , we have the area functional

A =
∫

dr dσ
r
√
y′(r)2 − 1

y(r)2
, (4.50)

where we have assumed that y′(r)2 � 1 as above, such that the induced signature on
the surface is Euclidean. We then find the equations of motion

∂r

(
r y′(r)

y(r)2
√
y′(r)2 − 1

)
+ 2r

√
y′(r)2 − 1

y(r)3
= 0 , (4.51)

and it is easy to check that the parametrization (4.49) indeed solves the equations
of motion. One might now expect that the solution for the boundary curve being the
light-cone centered at the origin, i.e. the single-cusp solution, can be obtained from
the solution (4.49) by taking the limit R → 0. Note however, that the induced metric
becomes degenerate in this limit, such that the area vanishes.
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If we then consider surfaces with y(r) = αr , with α > 1 to ensure Euclidean
signature, we find that the integrand2 in Eq. (4.50) becomes

√
α2 − 1

α2

1

r
, (4.52)

and hence reaches zero in the limits α → 1 and α → ∞ and becomes extremal for
α = √

2. This observation was made in Ref. [8], where the single-cusp solution

X0(σ, r) = r cosh σ , X1(σ, r) = r sinh σ , y(σ, r) = √
2 r , (4.53)

was found. A parametrization solving the equations of motion in conformal gauge
is given by

X0 = eτ cosh(σ) , X1 = eτ sinh(σ) , y = √
2 eτ . (4.54)

It was then noted in Ref. [7] that the single-cusp solution is related to the four-cusp
solution by an AdS-isometry. In order to discuss the relation, it is convenient to
use embedding coordinates (Z−1, Z0, Z1, Z2, Z3, Z4) for AdS5, for which the AdS-
isometries are given by SO(2, 4)-matrices. The embedding coordinates satisfy the
constraint

−Z2
−1 − Z2

0 + Z2
1 + Z2

2 + Z2
3 + Z2

4 = −1 . (4.55)

We translate the equations describing the minimal surface to embedding coordinates.
We recall that they are related to the Poincaré coordinates by the relations

Zμ = Xμ

y
, Z−1 + Z4 = 1

y
, Z−1 − Z4 = XμXμ + y2

y
. (4.56)

It is then easy to see that the equations

y2 = 2
(
X2
0 − X2

1

)
, X2 = 0 , X3 = 0 , (4.57)

describing the single-cusp solution in Poincaré coordinates translate to the equations

Z2
4 − Z2

1 = Z2
−1 − Z2

0 , Z2 = 0 , Z3 = 0 . (4.58)

If we now apply the AdS-isometry

2Naturally, the area is divergent since it corresponds to the divergent cusped Wilson loop.
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Z ′
−1 = 1√

2
(Z0 − Z−1) , Z ′

0 = 1√
2

(Z0 + Z−1) , Z ′
1 = 1√

2
(Z1 + Z4) ,

Z ′
2 = 1√

2
(Z1 − Z4) , Z ′

3 = Z3 , Z ′
4 = Z2 ,

the transformed surface satisfies the equations

Z ′
1Z

′
2 = Z ′

−1Z
′
0 , Z ′

3 = 0 , Z ′
4 = 0 . (4.59)

In terms of Poincaré coordinates, these equations are in turn expressed as

X ′
0 = X ′

1X
′
2 , y′ 2 = (

1 − X ′ 2
1

) (
1 − X ′ 2

2

)
, X ′

3 = 0 . (4.60)

In this form it is easy to see that the boundary curve is described by the four light-like
edges

(
X1 = ±1 , X0 = ±X2

)
,

(
X2 = ±1 , X0 = ±X1

)
. (4.61)

The four-cusp solution is hence equivalent to the single-cusp solution, andwe can use
either one to study the master symmetry, since it commutes with the G-symmetries.

Master symmetry for the single-cusp solution. Since the parametrization is slightly
simpler,weworkwith the single-cusp solution (4.54). In finding themaster symmetry
deformation, we use the identification of AdS3 with SL(2,R) discussed in Sect. 4.2.
Thus we employ the expressions for the master symmetry of principal chiral models
derived in Sect. 3.5. We recall that the master symmetry transformation is given by

gu = χl
u g χr −1

u (4.62)

where χ
r/ l
u are defined by the auxiliary linear problems

dχr
u = χr

u · Lr
p u , dχl

u = χl
u · Ll

p u . (4.63)

The left- and right Lax connection Lr/ l
u appearing above are deformations of the left-

and right Maurer–Cartan currents Ur = g−1dg and Ul = −dgg−1, which are both
flat and conserved. Explicitly, we have the expressions

Lr/ l
p u = u2

1 + u2
Ur/ l

p + u

1 + u2
∗Ur/ l

p . (4.64)

With g(X, y) as defined in Eq. (4.21) and the single-cusp solution (4.54), we have
the parametrization

g(τ ,σ) = 1√
2

(
e−τ eσ

−e−σ eτ

)
, (4.65)
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and for the Maurer–Cartan current Ur = g−1dg, we have

Ur
τ = 1

2

( −1 −eτ+σ

−e−τ−σ 1

)
, Ur

σ = 1

2

( −1 eτ+σ

e−τ−σ 1

)
. (4.66)

With ∗Ur = Ur
σ dτ −Ur

τ dσ, the Lax connection

Lr = u

1 + u2
(∗Ur + u Ur

)

has the components

Lr
τ = u

1 + u2
(
Ur

σ + u Ur
τ

)
, Lr

σ = u

1 + u2
(−Ur

τ + u Ur
σ

)
. (4.67)

Even though we are only dealing with (2 × 2) matrices and the functions appearing
in the Lax connections are fairly simple, the auxiliary linear problems (4.63) are
non-trivial to solve. Note however that

Ur
σ +Ur

τ =
(−1 0

0 1

)
, Ur

σ −Ur
τ =

(
0 eτ+σ

e−τ−σ 0

)
,

and moreover that

(1 − u)Lr
τ + (1 + u)Lr

σ = u (Uσ −Uτ ) ,

−(1 + u)Lr
τ + (1 − u)Lr

σ = −u (Uσ +Uτ ) .

We can thus simplify the differential equations by changing coordinates according
to

(
τ
σ

)
=

(
1 − u −(1 + u)

1 + u 1 − u

) (
x
y

)
, (4.68)

such that we have

∂x = (1 − u)∂τ + (1 + u)∂σ , ∂y = −(1 + u)∂τ + (1 − u)∂σ ,

and correspondingly the auxiliary linear problem takes the form

∂x χr
u = χr

u

(
0 u e2x−2uy

u e−2x+2uy 0

)
, ∂y χr

u = χr
u

(
u 0
0 −u

)
. (4.69)

Imposing the initial condition χr
u(0, 0) = 1, we then find the solution

χr
u(x, y) = 1

α

(
euy−x (α cosh(αx) + sinh(αx)) u ex−uy sinh(αx)

u euy−x sinh(αx) ex−uy (α cosh(αx) − sinh(αx))

)
,
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where we have abbreviated α = √
1 + u2. In order to find the deformed solution,

we also need to calculate the function χl
u , which is defined by the auxiliary problem

for the Lax connection Ll
u . The solution can however be constructed from the above

solution from χr
u(x, y). In order to see this, note that from gUrg−1 = −Ul we find

g
(
Lru −Ur ) g−1 = g

( −1

1 + u2
Ur + u

1 + u2
∗Ur

)
= 1

1 + u2
Ul − u

1 + u2
∗Ul = Ll−1/u .

We can thus identify (see AppendixA.3)

χl
u = g0 χr

−1/u g−1 . (4.70)

The deformed solution gu is thus given by

gu = g0 χr
−1/u χr −1

u , (4.71)

and we can read off the coordinates of the deformed solution from the general form
(4.21) of g(X, y). In this way, we find

X0,u(τ ,σ) =
(
1 + u2

)
cosh(σ−

u )(
1 + u2

)
cosh(σ+

u ) − √
1 + u2(u sinh(σ−

u ) + sinh(σ+
u ))

,

X1,u(τ ,σ) =
√
1 + u2(sinh(σ−

u ) − u sinh(σ+
u ))(

1 + u2
)
cosh(σ+

u ) − √
1 + u2(u sinh(σ−

u ) + sinh(σ+
u ))

, (4.72)

yu(τ ,σ) =
√
2

(
1 + u2

)
(
1 + u2

)
cosh(σ+

u ) − √
1 + u2(u sinh(σ−

u ) + sinh(σ+
u ))

,

where we have introduced the abbreviations

σ+
u = τ + uσ√

1 + u2
, σ−

u = σ − uτ√
1 + u2

.

The deformed solution given above indeed arises from the single-cusp solution (4.54)
by the composition of anAdS-isometry and a reparametrization, but this is difficult to
see in the form above. A more convenient way to describe the deformed surface is to
use an equation such as Eq. (4.57), which does not refer to a specific parametrization.
It is not difficult to see that the deformed solution given above satisfies the equation

(
u

(
X2
1 − X2

0 + y2 − 1
) + 2X1

)2 − 2
(
u2 + 1

) (
2X2

0 − y2
) = 0 . (4.73)

While the parametrization of the deformed solution satisfies the above equation, it
does not cover thewhole space of solutions.However,while technically cumbersome,
it is not difficult to find the branches of the space of solutions of the above equation,
which are covered by the parametrization (4.72). We note that the deformed surface
also covers negative values of y. This is not surprising since AdS-isometries do
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(a) Boundary Curve (b) Minimal Surface

Fig. 4.2 Display of the deformed boundary curve and minimal surface for u = 1. The dashed lines
in the picture of the boundary curve mark the parts of the solution of equation (4.74), which are not
reached by the parametrization (4.72) from y > 0

not commonly map the two regions covered by Poincaré coordinates to themselves.
The deformed minimal surface for y > 0 and u = 1 is depicted in Fig. 4.2. Another
advantage of working with an equation such as (4.72) is that the boundary limit
y → 0 can be obtained easily. For the boundary curve we thus find the equation

(
u

(
x21 − x20 − 1

) + 2x1
)2 − 4

(
u2 + 1

)
x20 = 0 , (4.74)

which describes the union of two light-cones centered at x0 = 0 and

x+
1 = −1 + √

1 + u2

u
, x−

1 = −1 − √
1 + u2

u
, (4.75)

respectively. The center of the first light-cone moves from 0 to 1 as u increases from
0 to ∞, whereas the center of the second moves from −∞ to −1. Again, not the
whole of the boundary curve described here is covered by the parametrization of the
deformed surface, see Fig. 4.2.

It was pointed out above that the deformed surface is related to the original one by
an AdS-isometry, i.e. the boundary curves are related by a conformal transformation,
which is indicated by the transformed boundary curve being light-like everywhere.
Equation (4.73) in principle allows to find theAdS-isometry relating the two surfaces,
but it is simpler to study this question infinitesimally. For an infinitesimal transforma-
tion, any variation tangential to the surface can be accounted for by an infinitesimal
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reparametrization. Hence, we only need to consider the part of the variation, which
is parallel to the normal vector

(
Xn
0(τ ,σ), Xn

1(τ ,σ), yn(τ ,σ)
) =

(√
2eτ cosh(σ),

√
2eτ cosh(σ), eτ

)
. (4.76)

We compare this piece of the variation to a generic AdS-isometry, which can be
parametrized by

δX0 = a0 + ωX1 + sX0 + c0
(
X2
1 − X2

0

) − 2X0 (c1X1 − c0X0) ,

δX1 = a1 + ωX0 + sX1 + c1
(
X2
1 − X2

0

) − 2X1 (c1X1 − c0X0) , (4.77)

δy = sy − 2y (c1X1 − c0X0) .

Here, the parameters
(
aμ,ω, s, cμ

)
correspond to generators

(
Pμ, M01, D, Kμ

)
,

respectively. Comparing the projection of the master symmetry variation

δ̂ (X0, X1, y) = d

du

(
X0,u, X1,u, yu

) ∣∣
u=0 (4.78)

onto the normal vector (4.76) shows that it can be accounted for by an AdS-isometry
with all of the above parameters set to zero, except

a1 = c1 = 1

2
. (4.79)

We have hence found that the minimal surface described by the parametrization
(4.72) is related to the single-cusp solution by an AdS-isometry.

4.3.2 Numerical Deformations

The examples discussed above could lead to the impression that the master sym-
metry transformation is typically given by a combination of a G-symmetry and
a reparametrization. This is however only the case for the particularly symmetric
boundary curves, for which minimal surface solutions are known. More complicated
boundary curves have been studied in Refs. [6, 9] and there one observes deforma-
tions, which cannot be related to conformal transformations of the boundary curves.

Not many minimal surfaces in Euclidean or Lorentzian Anti-de Sitter space are
known analytically and for generic boundary curves we need to rely on numerical
results in order to approximate the deformations. For the Euclidean case, a numerical
approach to the calculation of the master symmetry deformation of minimal surfaces
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Fig. 4.3 Minimal surfaces arising from the master symmetry deformation of the minimal surface
for an elliptical boundary curve. The values of the spectral parameter θ range from 0 to π in uniform
steps. For values ranging from π to 2π, the deformation continues until the original shape is reached
again. This figure has been reproduced from Ref. [1]

has been developed and described in Ref. [1] and the numerical results obtained
therein3 are shown in Figs. 4.3 and 4.4.

In short, the algorithm that created the images referenced above works as follows:
The original boundary curve is provided to the program Surface Evolver [10] in
parametric form along with the AdS metric and an initial (crude) approximation
of the minimal surface. The program then returns an approximate discrete minimal
surface, from which a discrete approximation of the Maurer–Cartan current can be
calculated. After finding a parametrization satisfying conformal gauge, the Maurer–
Cartan current U is deformed into the Lax connection Lu and the deformed surface
is approximated by integrating the defining relation (3.65),

3While an author of this paper, the author of the present thesis has participated little in the work
that lead to the algorithm described here.



120 4 Minimal Surfaces in AdS

Fig. 4.4 Minimal surfaces arising from the master symmetry deformation of the minimal surface
for the boundary curve being a square. The values of the spectral parameter θ range from 0 to π in
uniform steps. For values ranging from π to 2π, the deformation continues until the original shape
is reached again. This figure has been reproduced from Ref. [1]

g−1
u dgu = Lu , gu(z0) = g(z0) ,

where the initial condition is taken at a point far away from the boundary, which has
proven to give better numerical results. The coordinates of the deformed minimal
surface can the be read off the group elements gu by employing the form (4.16).

4.4 Infinitesimal Symmetry Transformations

In the last section we have derived the master symmetry transformations for certain
boundary curves, for which the minimal surfaces were known either analytically
or numerically. For generic boundary curves, one could hope to bypass the min-
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imal surface problem and find the transformed boundary curve directly from the
original one, e.g. by finding a differential equation for the transformed boundary
curve. Unfortunately, this seems not to be possible. We thus consider the infinitesi-
mal transformations of generic boundary curves, focusing on the master and level-1
Yangian-like symmetry. Here, we consider two approaches. We begin by calculating
the variation of the boundary curves from the variations discussed in Sect. 3.6 using
the Polyakov–Rychkov expansion. The variations obtained in this way include the
third-order coefficient of the expansion, which cannot be fixed from the expansion
around the boundary. This shows that calculating the transformation of the boundary
curve indeed requires finding a minimal surface solution.

Since we consider the variations on shell, the variation of the area is in gen-
eral given by a boundary term, which is absent for the master symmetry itself but
generically non-vanishing. The identity arising from equating the action of the vari-
ation on the minimal area and the corresponding boundary term is comprised in the
Noether charge associated to the respective variation. The vanishing of these charges
encodes the global information that the minimal surface closes and they thus contain
information which is not captured in the expansion around the boundary curve. We
evaluate the level-1 Yangian charge explicitly in order to obtain the corresponding
Ward identity at strong coupling. This approach was already discussed in Ref. [2],
where the level-1 Yangian Ward identity for the Maldacena–Wilson loop at strong
coupling was first derived. The result appears in new light due to the underpinning
of the associated variation and the calculation of the variation of the boundary curve.
The re-derivation presented here also serves the purpose of preparing the similar
calculation for the Wilson loop in superspace, which we consider in Chap. 7. The
further interpretation of the symmetries is postponed to Chap.5, where we discuss
the possible continuations to weak or arbitrary coupling.

4.4.1 Variations of the Boundary Curves

We first consider the variation of the boundary curve under the bilocal symmetries
discussed in Sect. 3.6, i.e. for the level-0 master and the level-1 Yangian symmetry.

Level-0master symmetry.We have already discussed theG-symmetry variations of
generic boundary curves in Sect. 4.2. This discussion can be generalized to arbitrary
variations δg = ηg by replacing Ta by η in the variations (4.36),

δXμ = y

4

(
tr

(
g−1ηg K μ

) + tr
(
g−1ηg Pμ

))
, δy = y

2
tr

(
g−1ηg D

)
. (4.80)

Making use of these relations, we now turn to the master variation, which is given
by

δ̂g = χ(0) · g , χ(0) =
∫

∗ j . (4.81)
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As we are aiming for the variation of the boundary curve, we only need to compute
χ(0) in the vicinity of the boundary. More precisely, we calculate χ(0) at y = ε in an
expansion in ε. The expansion (4.12) of the minimal surface solution close to the
conformal boundary is sufficient to do so. For the Noether current j = −2gag−1,
we note

j = −2 eX P

(
dXμ

2y2
(Kμ + y2Pμ) + dy

y
D

)
e−X P , (4.82)

and by inserting the Polyakov–Rychkov expansion (4.12), we find that jσ takes the
form

jσ = 1

τ 2
jσ(−2) + jσ(0) + O(τ ) . (4.83)

By using current conservation, we can then fix all components of jτ except for jτ (0),

jτ = 1

τ
∂σ jσ (−2) + jτ (0) − τ ∂σ jσ(0) + O(τ 2) . (4.84)

In the discussion below we will need the coefficients jσ (−2) and jτ (0). For the first
coefficient, we note that

jσ (−2) = −ex P
(
ẋμ

ẋ2
K μ

)
ex P = −4

ẋμ

ẋ2
ξ̂μ(x) . (4.85)

Here, the quantity ξ̂μ(x) is related to the conformal Killing vectors (4.39) by

ξ̂μ(x) = ξμ
a (x) T a = 1

4
ex P K μe−x P . (4.86)

For the computation of the coefficient jτ (0), we note that the τ−1-coefficient in

∂τ Xμ

2y2
(Kμ + y2Pμ) + ∂τ y

y
D

does not get mixed with the τ 0-coefficient by the conjugation with eX P , since the
expansion of the X -coordinates is given by X = x + O(τ 2). Hence we find the
expression

jτ (0) = 4
δAren(γ)

δxμ
ξ̂μ(x) . (4.87)

With these coefficients calculated, we turn to the calculation of χ(0) for y = ε which
corresponds to the point (τ0(σ),σ) in parameter space. The definition ofχ(0) requires
to choose some starting point on the worldsheet, which we take to be (τ = c,σ = 0).
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Since χ(0) is path-independent, we may use any path connecting the points (c, 0) and
(τ0(σ),σ). We choose the composed path γ = γ1 ∗ γ2, where γ1 connects (c, 0) to
(τ0(σ), 0) alongσ = 0 and γ2 connects (τ0(σ), 0) to (τ0(σ),σ) along theσ-direction.
We find

∫
γ1

∗ j =
τ0(σ)∫

c

dτ jσ(τ , 0) = − 1

τ0(σ)
jσ (−2)(0) + ζ + O(ε) ,

∫
γ2

∗ j =
σ∫

0

dσ′ (− jτ (τ0(σ),σ′)
) = 1

τ0(σ)

(
jσ (−2)(0) − jσ (−2)(σ)

) −
σ∫

0

dσ′ jτ (0)(σ
′) .

Here, ζ is some σ-independent element of g and we may neglect the conformal
transformation which it parametrizes. Combining the two results we find

χ(0)(τ0(σ),σ) = 4

ε

ẋ(σ)μ

|ẋ(σ)| ξ̂μ(x(σ)) + ζ

− 4

σ∫

0

dσ′ δAren(γ)

δxμ(σ′)
ξ̂μ(x(σ′)) + O(ε) . (4.88)

We can then determine the variation of the coordinates. Let us first convince ourselves
that the master symmetry does not move the boundary into the bulk, i.e. we have
δ̂y → 0 as y approaches 0. Making use of Eq. (4.80) with η = χ(0), we find

δ̂y = y

2
tr

(
g−1χ(0)gD

) = 2 ẋ(σ)μ

|ẋ(σ)| tr
(
y−De−X ·P ξ̂μeX ·P yDD

)
+ O(y)

= 2 ẋ(σ)μ

|ẋ(σ)| tr (K μD) + O(y) = O(y) , (4.89)

which shows that the master symmetry maps the conformal boundary to itself. For
the variation of the X -coordinates we find

δ̂Xμ = 1

4
tr

(
e−X ·Pχ(0)eX ·P K μ

) + O(y) = tr
(
χ(0)ξ̂μ(x)

)
+ O(y)

= 1

4y

ẋ(σ)ν

|ẋ(σ)| tr (K νK μ) + δζX
μ

− 4Gab

σ∫

0

dσ′ δAren(γ)

δxν(σ′)
ξν
a (x(σ

′)) ξ
μ
b (x(σ)) + O(y) . (4.90)

As the first term vanishes due to tr (K νK μ) = 0, we can safely take the limit y → 0.
We neglect the conformal variation parametrized by ζ as it is independent of the
point along the contour and depends on our choice of a starting point on the minimal
surface. Then we obtain
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δ̂xμ(σ) = −4Gab

σ∫

0

dσ′ δAren(γ)

δxν(σ′)
ξν
a (x(σ

′)) ξ
μ
b (x(σ)) . (4.91)

The appearance of the third-order coefficient of the expansion (4.12) indicates that
it is indeed necessary to compute the minimal surface solution in order to determine
the master transformation of the boundary curve as it was done in Refs. [6, 11–13].

From the considerations of Chap.3 and the proof given in Sect. 4.1 it is clear that
the above variation is a symmetry of the minimal area. In fact, this is easy to see
directly from the variation and without referring to the formalism introduced before,

δ̂Aren(γ) =
2π∫

0

dσ
δAren(γ)

δxμ(σ)
δ̂xμ(σ)

= −4Gab

2π∫

0

dσ

σ∫

0

dσ′ δAren(γ)

δxμ(σ)
ξ

μ
b (x(σ))

δAren(γ)

δxν(σ′)
ξν
a (x(σ

′))

= −2Gab δb (Aren(γ)) δa (Aren(γ)) = 0 . (4.92)

It is intriguing that the invariance of the minimal area under the master symmetry,
which can be employed to construct all nonlocal conserved charges and their associ-
ated symmetry transformations, followswithout referring to integrability. This corre-
sponds to the finding that the conserved charge associated with the master symmetry
itself is the Casimir of the G-symmetry charges.

Level-1 Yangian-like symmetry. The procedure described above for the master
symmetry variation can in principle be carried out for any of the variations described
in Sect. 3.6, although that would require to extend the expansion (4.13) to higher
orders. Here, we study the level-1 Yangian-like variation δ(1)

ε .
Noting that the master variation is given by δ̂g = Gbcχ(0)

b Tcg, whereas a level-1
Yangian variation is given by

δ(1)
a g = [

Ta,χ
(0)] g = fa

bcχ(0)
b Tcg , (4.93)

suggests that the variation of the boundary curve can be obtained from (4.91) by
replacing Gbc by fabc to obtain

δ(1)
a xμ(σ) = −4 fa

bc

σ∫

0

dσ′ δAren(γ)

δxν(σ′)
ξν
b (x(σ

′)) ξμ
c (x(σ)) . (4.94)

However, we still need to discuss the divergent terms contained in the expression
given for χ(0) in Eq. (4.88), which did not contribute to the master variation δ̂. For
the variation of the original boundary curve, we find the additional term
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ẋν

|ẋ |ε tr
([

Ta , ξ̂ν(x)
]
ξ̂μ(x)

)
= ẋν

|ẋ |ε tr
([

ξ̂ν(x) , ξ̂μ(x)
]
Ta

)
= 0 , (4.95)

which shows that our expectation (4.94) is indeed correct. For the variation of y,
however, we have

δ(1)
a y = 2 ẋμ

|ẋ | tr
(
e−x ·P

[
Ta , ξ̂μ(x)

]
ex ·P D

)

= 2 ẋμ

|ẋ | tr
([

e−x ·P ξ̂μ(x)ex ·P , D
]
e−x ·PTaex ·P

)
= 2 ẋμ

|ẋ | ξμ
a (x) . (4.96)

We thus see that the level-1Yangian-like variation δ(1)
a generically shifts the boundary

curve into the bulk. This behaviour is accompanied by a divergent boundary term
arising from the application of δ(1)

a to the minimal area Aren(γ). Let us also note that
for certain choices of the boundary curve γ and ε, the boundary curve is not shifted
into the bulk. The simplest example corresponds to ε = D and the boundary curve
being a circle. In this case we find

δ(1)
D y = 2 ẋμxμ

|ẋ | + O(y) = O(y) .

4.4.2 Evaluation of Conserved Charges

In order to obtain the Ward identity for the level-1 Yangian-like variations, we
evaluate the conserved charge Q(1) on the minimal surface by employing the
Polyakov–Rychkov expansion (4.12). Let us begin by considering the conserved
charge associated to the conformal symmetry,

Q(0) = −
2π∫

0

dσ jτ . (4.97)

If we consider the Laurent expansion of the above charge in τ , all of the coefficients
expect Q(0)

(0) vanish due to the equations of motion, and hence we have

Q(0) = Q(0)
(0) = −

2π∫

0

dσ jτ (0) = −4

2π∫

0

dσ
δAren(γ)

δxμ(σ)
ξ̂μ(x(σ)) , (4.98)

where we have inserted the expression (4.87) for jτ (0). The vanishing of the charge
thus encodes the conformal symmetry of the minimal surface problem,
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2π∫

0

dσ
δAren(γ)

δxμ(σ)
δax

μ(σ) = 0 . (4.99)

We then turn to the level-1 Yangian charge

Q(1) = 1

2

L∫

0

dσ1 dσ2 ε (σ2 − σ1) [ jτ (σ1), jτ (σ2)] + 2

L∫

0

dσ jσ(σ) . (4.100)

Here, we have introduced the notation ε(σ) = θ(σ) − θ(−σ) and restricted to a
parametrization by arc-length, which will simplify the calculations below. As for
the level-0 charge, we focus on the τ 0-coefficient, since all other coefficients vanish
automatically due to the equations of motion. Making use of the expansion of jτ as
given in Eq. (4.84), we find the τ 0-coefficient of Q(1) to be

Q(1) = 1

2

L∫

0

dσ1 dσ2 ε (σ2 − σ1)
[
jτ (0)(σ1), jτ (0)(σ2)

] + Q(1)
local , (4.101)

where the local term includes contributions that arise from the first term of Q1 after
integration by parts,

Q(1)
local =

L∫

0

dσ
(
2 jσ (0) − [ jσ, ∂σ jσ](−2)

)
. (4.102)

We can further simplify the calculation of the local term by using jσ = −2gaσg−1

to get

2 jσ (0) − [ jσ, ∂σ jσ](−2) = −4
{
g

(
aσ + τ 2 [aσ, ∂σaσ + [Uσ, aσ]]

)
g−1

}
(0) . (4.103)

Here, it is preferable to do the conjugation with eX P last. Noting that

yDUσ y
−D = ẊμPμ + ẏ

y
D , yDaσ y

−D = Ẋμ

2y2
(
Kμ + y2Pμ

) + ẏ

y
D ,

we find the intermediate result

yD
(
aσ + τ 2 [aσ, ∂σaσ + [Uσ, aσ]]

)
y−D

= 2ẋμ + τ 2
(
ẋμ ẍ2 + ...

x μ
)

2τ 2
Kμ − ẋμ ẍνMμν + O(τ ).

Here, we have made use of the arc-length parametrization, which e.g. allows to
conclude that
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ẏ = O(τ 3) , ẋ · ẍ = 0 , ẋ · ...x = −ẍ2 .

The conjugation with eX P is now simplified by the finding

ẋμXν
(2)

[
Pν, Kμ

] − ẋμ ẍνMμν = 0 ,

which implies that

{
eX P

(
ẋμ

τ 2
Kμ − ẋμ ẍνMμν

)
e−X P

}
(0)

= 0 .

We have hence found the local term to be

Q(1)
local = −2

L∫

0

dσ ex P
(
ẋμ ẍ

2 + ...
x μ

)
K μe−x P = −8

L∫

0

dσ
(
ẋμ ẍ

2 + ...
x μ

)
ξ̂μ(x) .

The full level-1 Yangian charge is hence given by

Q(1) = 8

L∫

0

dσ1 dσ2 ε21

[
ξ̂

μ
1 , ξ̂ν

2

] δAren

δxμ
1

δAren

δxν
2

− 8

L∫

0

dσ
(
ẋμ ẍ

2 + ...
x μ

)
ξ̂μ(x) ,

where we have abbreviated ε21 = ε(σ2 − σ1) and ξ̂
μ
i = ξ̂μ(x(σi )). The vanishing of

the level-1 charge hence encodes the identity

f cb
a

L∫

0

dσ1 dσ2 ε21 ξ
μ
1b

δAren

δxμ
1

ξν
2c

δAren

δxν
2

−
L∫

0

dσ ξμ
a

(
ẋμ ẍ

2 + ...
x μ

) = 0 . (4.104)

We can interpret the above identity as the result of acting with the variation (4.94)
of the boundary curve on Aren(γ) to obtain the local term as a boundary term. Note
that the boundary term obtained in this way is not simply the boundary term arising
from applying the variation δ(1)

a to the area functional, since we are not considering
exactly this variation but rather only the variation (4.94) of the boundary curve with
y = 0 fixed. A different interpretation of the identity (4.104) is that it arises from the
application of the Yangian level-1 generator

J(1)a = f cb
a

L∫

0

dσ1 dσ2 ε21 ξ
μ
1b ξν

2c
δ2

δxμ
1 δxν

2

− λ

4π2

L∫

0

dσ ξμ
a

(
ẋμ ẍ

2 + ...
x μ

)
(4.105)
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to the expectation value of the Maldacena–Wilson loop at strong coupling,

〈W (γ)〉 = exp
(
−

√
λ

2π Aren(γ)
)

. (4.106)

This interpretation has been proposed in reference [2] andwe discuss it inmore detail
in the next chapter.

4.5 Minimal Surfaces in S5

So far, we have exclusively considered minimal surfaces in AdS5. For Maldacena–
Wilson loops with non-constant sphere vectors nI , however, the strong-coupling
description also includes a minimal surface in S5 bounded by the curve nI (σ). Since
S5 is a symmetric space as well, we can again employ the symmetries discussed in
Chap.3. In fact, since the S5-metric does not diverge upon approaching the boundary
curve, the discussion is significantly simplified.

As a preparation for our discussion of minimal surfaces in superspace in Chap. 7,
we describe the sphere S5 by using a coset construction based on SU(4)-matrices.
The Lie algebra su(4) is decomposed into a gauge and coset part as

h = span
{
γrs = 1

4

[
γr , γs

]
, γr6 = 1

4

[
γr , γ5

]
: r, s ∈ {1 , . . . , 4}

}
� so(5) ,

m = span
{
γr5 = i

2γr , γ56 = − i
2γ5 : r ∈ {1 , . . . , 4}

}
. (4.107)

Here, thematrices γ I J = −γ J I are constructed from theDiracmatrices {γ1, . . . , γ5},
which are introduced in AppendixA.2. They satisfy the Clifford algebra

{
γr , γs

} = 2δrs 1 ,
{
γr , γ5

} = 0 ,
{
γ5, γ5

} = 2 1 . (4.108)

A suitable choice of coset representatives can be adapted from Ref. [14],

m(φ, z) = exp
(
i
2φγ5

) (
1 + z2

)−1/2 (
1 + i zrγr

)
. (4.109)

For the Maurer–Cartan form U = m−1dm = A + a, we find using basic gamma-
matrix manipulations

A = 2 zrdzs

1 + z2
γrs + 2 zrdφ

1 + z2
γr6 , a = −1 − z2

1 + z2
dφ γ56 + 2 dzr

1 + z2
γr5 . (4.110)

For the metric of the coset space, we note

ds2 = − tr (a a) = 4 dz2

(1 + z2)2
+

(
1 − z2

1 + z2

)2

dφ2 = dN I dN I . (4.111)

Here, we are using the trace metric with a factor of −1, since this factor will arise
from the supertrace when we are considering the supercoset based on SU(2, 2|4).
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The coordinates (φ, zr ) are related to the embedding coordinates of the sphere by

Nr = 2 zr

1 + z2
, N 5 + i N 6 = 1 − z2

1 + z2
eiφ . (4.112)

For z � 1, we get a one-to-one map between the coordinates. We are particularly
interested in the Noether current j = −2mam−1, for which we find the expression

j = 2

(
1 − z2

1 + z2

)2

dφ γ56 + 4
cosφ (1 − z2)zr dφ − sin φ

[
(1 − z2)dzr + 2(zdz)zr

]

(1 + z2)2
γr6

− 4
cosφ

[
(1 − z2)dzr + 2(zdz)zr

]
+ sin φ(1 − z2)zrdφ

(1 + z2)2
γr6 + 8zrdzs

(1 + z2)2
γrs

= 2 N I dN J γ I J . (4.113)

We note that the Noether current is not divergent when we approach the boundary
curve. This simplifies the calculation of the τ 0-coefficient of the conserved charges. In
fact, we only need to find the first coefficient in the τ -expansion of the parametrization
of the minimal surface,

N I (τ = 0,σ) = nI (σ) , N I (τ ,σ) = nI (σ) + τ N I
(1)(σ) + O(τ 2) . (4.114)

This coefficient can be identified with the variation of the minimal area, for which
we note the functional4

A[N , h] = −1

2

∫
tr (a ∧ ∗a) = 1

2

∫
dτ ∧ dσ hi j ∂i N

I ∂ j N
J (4.115)

In order to determine the coefficient N I
(1), we consider a variation δnI of the boundary

curve, which induces a variation δN I of the parametrization of the minimal area.
Using that the parametrization of the minimal area satisfies the equations of motion,
one only picks up a boundary term in computing the variation of the area and thence
(we use conformal gauge)

δAmin = −
∫

dσ N I
(1) δnI . (4.116)

Due to the use of embedding coordinates N I we have nI δnI = 0 and we conclude
that

4One should add a Lagrange multiplier term when working with embedding coordinates in order
to enforce the constraint N 2 = 1. This term will not be relevant for our further considerations and
so it is left out here.
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δAmin

δnI (σ)
= −N I

(1)(σ) + α(σ)nI (σ) .

The coefficient α(s) is determined from the condition nI N I
(1) = 0 and we find

N I
(1)(σ) = − δAmin

δnI (σ)
+

(
nJ (σ)

δAmin

δnJ (σ)

)
nI (σ) . (4.117)

With this information, we can go on to evaluate the conserved charges Q(0) and Q(1).
For the components of the Noether current, we have

jτ (0) = nI (σ)
δAmin

δnJ (σ)
γ I J , jσ (0) = nI (σ) ṅ J (σ) γ I J . (4.118)

and the vanishing of the conserved charges thus encodes the condition

∫
dσ

(
nI (σ)

δAmin

δnJ (σ)
− nJ (σ)

δAmin

δnI (σ)

)
= 0 , (4.119)

corresponding to the SO(6)-invariance of the surface, as well as the non-local con-
dition

∫
dσ1 dσ2 ε21

(
nK
1

δAmin

δnK
2

(
nI
2

δAmin

δnJ
1

− nJ
2

δAmin

δnI
1

)
+ nK

1 n
K
2

δAmin

δnI
1

δAmin

δnJ
2

+ nI
1n

J
2

δAmin

δnK
1

δAmin

δnK
2

)
=

∫
dσ

(
nI ṅ J − nJ ṅ I

)
. (4.120)
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Chapter 5
Away from Strong Coupling

It is natural to ask if and how the symmetries discussed in the last chapter can be
extended to any value of the coupling constant λ. Even if a proof of the symmetry
property for any value of the coupling constant is out of reach, establishing the
symmetry for both large and small values of the coupling constant would show that
it is not merely a specialty of either approximation. Below, we discuss different
options to transfer the symmetries of minimal surfaces in AdS5 to arbitrary values
of the coupling constant λ and indicate which of these are successful.

5.1 Transferring Variations

Themost direct approach to extend the strong-coupling symmetries to smaller values
of the coupling constant is to use the same transformations or variations at any value.
One could then calculate a variation or large transformation for a specific boundary
curve and check whether the one-loop expectation value (2.116) of the Maldacena–
Wilson loop over this curve is invariant. This approach was discussed by Dekel
in Ref. [1] for the spectral-parameter deformation introduced in Refs. [2, 3], which
is the realization of the large master symmetry transformation in Euclidean AdS3.
Building on the wavy expansion studied in Refs. [4, 5], he considered elliptical
boundary curves as perturbations of the circle and computed the deformations of
these curves to high orders. The weak-coupling analysis showed that the invariance
observed at strong coupling is broken beyond a certain order in the expansion in the
waviness.

This finding shows that the master variation (4.93) is generically not a symmetry
of the Maldacena–Wilson loop,

̂δ 〈W (γ)〉 = −4Gab

2π
∫

0

dσ

σ
∫

0

dσ′ δ 〈W (γ)〉
δxμ(σ)

ξ
μ
b (x(σ))

δAren(γ)

δxν(σ′)
ξν
a (x(σ

′)) �= 0 .
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The variation can, however, be adapted in such a way that it becomes a symmetry.
By the same reasoning as in (4.94) the variation defined as

̂δ(λ)x
μ(σ) = −4Gab

σ
∫

0

dσ′ δ ln 〈W (γ)〉
δxν(σ′)

ξν
a (x(σ

′)) ξ
μ
b (x(σ)) (5.1)

constitutes a symmetry of the Maldacena–Wilson loop,

̂δ(λ) 〈W (γ)〉 = − 2

〈W (γ)〉 G
ab δb 〈W (γ)〉 δa 〈W (γ)〉 = 0 . (5.2)

While the derivation of the invariance is trivial, the action of the variation on different
curves should be similarly non-trivial as in the numerical examples of the last chapter.
One can adapt the level-1 Yangian-like symmetry variation (4.96) similarly to obtain
the variation

δ(1)
(λ)ax

μ(σ) = −4 fa
bc

σ
∫

0

dσ′ δ ln 〈W (γ)〉
δxν(σ′)

ξν
b (x(σ

′)) ξμ
c (x(σ)) . (5.3)

Given that the strong-coupling limit of this variation gives a boundary term when
acting on the area of the minimal surface, one would not expect the above variation to
give a symmetry, but only that its action on the expectation value of the Maldacena–
Wilson loop might be local as well. Unfortunately, such a behavior is difficult to see
and could not be established at weak coupling for the one-loop expectation value
(2.116).

5.2 Transferring Generators

A different approach to extend the symmetries found at strong coupling is to carry
over their generators rather than the variations; this approach was discussed in
Ref. [6]. The conformal symmetry can (at any value of λ) be written as the invariance
under the action of the level-0 generators

J(0)a =
∫

dσ ξμ
a (x(σ))

δ

δxμ(σ)
. (5.4)

The master symmetry becomes trivial in this approach, since it corresponds to the
Casimir of the level-0 generators, GabJ(0)a J(0)b . We have seen above that the van-
ishing of the level-1 Yangian charge Q(1) can be rewritten as the invariance of the
Maldacena–Wilson loop under the level-1 Yangian generator
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J(1)a = facb
L

∫

0

dσ1 dσ2 ε21 ξ
μ
1b ξν

2c
δ2

δxμ
1 δxν

2

− λ

4π2

L
∫

0

dσ ξμ
a

(

ẋμ ẍ
2 + ...

x μ

)

, (5.5)

which we decompose into a bi-local and a local part, J(1)a = J(1)a,bi−lo + λJ(1)a,lo. The
application of this generator to the strong-coupling limit of the expectation value of
the Maldacena–Wilson loop,

〈W (γ)〉 = exp
(

−
√

λ
2π Aren(γ)

)

, (5.6)

gives the identity (4.108). Here, we only consider the leading term in the expansion
in 1/

√
λ and neglect the double-derivative term appearing at the sub-leading order.

The bilocal part of this generator shows the typical structure of a level-one Yangian
symmetry generator as it is known from two-dimensional integrable field theories
or scattering amplitudes, cf. the discussion in Sect. 2.1. The Poisson algebra of the
associated conserved charges suggests that these generators satisfy aYangian algebra
and it was indeed shown in Refs. [7, 8] that generators of the form J(1)a,bi−lo satisfy the
commutation relations of the Yangian algebra,

[

J(0)a , J(1)b

]

= fabc J(1)c . (5.7)

The Serre relations were discussed for the special case of the underlying Lie Group
being SU(N ) in Ref. [8]. At least the commutation relation above can be transferred
also to the local term. This follows from noting that

J(1)a,bi−lo 〈W (γ)〉 = (

λ J(1)a,lo + O(
√

λ
)) 〈W (γ)〉

implies

[

J(0)a , J(1)b,bi−lo

] 〈W (γ)〉 = (

λ
[

J(0)a , J(1)b,lo

] + O(
√

λ
)) 〈W (γ)〉 ,

such that the commutation relation (5.7) transfers to the local part. We check this
property explicitly in Appendix A.4, since it provides a strong consistency check
of the calculation performed in Sect. 4.4. Even though we cannot apply the above
argument to transfer the validity of the Serre relation for the bi-local pieces to the
full generators, there is strong evidence that the above level-1 generators satisfy the
commutation relations of the Yangian algebra Y[so(2, 4)].

There is, however, an algebraic problem that prevents this generator from becom-
ing a symmetry at weak coupling. We have noted before that all of the non-local
variations depend on the choice of the point z0 on the worldsheet where the initial
condition χu(z0) = 1 is imposed. Changing this point amounts to the transformation
χu → L · χu , see Sect. 3.4. For the higher Yangian-like variations this implies
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Fig. 5.1 Schematic drawing
of the parameter regions
σ2 > σ1 for the generators
J(1)a and J̃(1)a . The difference
of the two generators is
obtained as the difference
that arises from integrating
over the regions and

δ(u)
ε → δ(u)

ε̃ with ε̃ = L−1 ε L .

For the generator J(1)a , however, the base-point dependence is different. For explicit-
ness, let us consider a curve γ parametrized by x : [0, L] → R

(1,3). Instead of x(0)
we could equally well choose a different starting point x(�) and obtain a different
level-1 generator J̃(1)a . The difference of the parameter regions for the bi-local inte-
grals of the two generators is depicted in Fig. 5.1. For the difference between the two
level-1 generators, we find

J̃(1)a − J(1)a = 2

(∫ L

�

dσ1

∫ �

0
dσ2 −

∫ �

0
dσ1

∫ L

�

dσ2

)

facb jb(σ1) jc(σ2)

= 2 facb
(

J(0)b j�c − j�b J(0)c

)

. (5.8)

Here, we have introduced the abbreviations

j�a :=
�

∫

0

dσ ja(σ) , ja(σ) = ξμ
a (x(σ))

δ

δxμ(σ)
. (5.9)

If we act on an object that is invariant under the level-0 generators, all terms that
contain the generator J(0)a at the right-most position can be neglected. Then, we get

J̃(1)a − J(1)a � 2 fcba fdbc j
�
d = 4c j�a . (5.10)

The index structure appears for any Lie algebra, the numerical factor of c is called
the dual Coxeter number and depends on the underlying algebra; it accounts for the
difference between the Killing metric and the trace metric which we are using to
raise and lower the group indices. For the conformal algebra so(2, 4), we note that
c = 2.
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Since the starting points for the generators J(1)a are chosen arbitrarily, both J̃(1)a and
J(1)a should be symmetries in order to have level-1 Yangian symmetry. Hence, since
� is arbitrary, the functional derivative δ/δxμ(σ) at any point on the loop would
have to annihilate the result, which can clearly not be the case. Note that the base-
point dependence does not contradict the strong-coupling result, since the difference
between the two level-1 generators gives a sub-leading result when applied to (5.6).

We have thus seen that the invariance of the Maldacena–Wilson loop under the
above level-1 generators, which we showed for asymptotically large λ, cannot extend
in an expansion in 1/

√
λ. This matches well with the finding that the generators (5.5)

do not annihilate the one-loop expectation value of the Maldacena–Wilson loop,
which was obtained in Ref. [6] by explicit calculation. It is, however, possible to
obtain a cyclic generator of the form (5.5) by adding an appropriate ‘local’ term.
This was noted in Ref. [9] in the study of loop amplitudes in the bi-scalar field theory
introduced in Ref. [10].

In order to find the appropriate local term, it is simpler to consider the level-
1 Yangian generators for the discrete multi-site space discussed in Sect. 2.1. We
consider the generators

J(1)a = facb
N

∑

i<k

Jb,i Jc,k +
N

∑

i=1

vi Ja,i = J(1)a,bi−lo + J(1)a,lo . (5.11)

Here, we have added a generic local term J(1)a,lo with coefficients vi . A non-constant
choice for these coefficients would render the local term non-cyclic as well and the
idea is to choose them in such a way that the sum with the bi-local piece J(1)a,bi−lo
becomes cyclic under generic shifts of the starting point up to level-0 generators.
Transferring our above result for the continuous case, we see that the bi-local piece
transforms as

J(1)a,bi−lo

∣

∣

m+1,N+m − J(1)a,bi−lo

∣

∣

1,N � 4c
m

∑

i=1

Ja,i , (5.12)

under a shift of the starting point from 1 to m. Here, we have adapted the notation
of Ref. [9] to make the starting-point dependence explicit and again left out terms
containing level-0 generators at the right-most position. For the local part of the
level-1 generator, we find the transformation

J(1)a,lo

∣

∣

m+1,N+m − J(1)a,lo

∣

∣

1,N =
N+m
∑

i=m+1

vi−mJa,i −
N

∑

i=1

vi Ja,i

=
m

∑

i=1

(vi−m+N − vi ) Ja,i +
N

∑

i=m+1

(vi−m − vi ) Ja,i .
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For the full level-1 generator we thus have

J(1)a

∣

∣

m+1,N+m − J(1)a

∣

∣

1,N =
m

∑

i=1

(vi−m+N − vi + 4 c) Ja,i +
N

∑

i=m+1

(vi−m − vi ) Ja,i ,

and we aim to fix the coefficients vi by demanding that

J(1)a

∣

∣

m+1,N+m − J(1)a

∣

∣

1,N = bm J(0)a . (5.13)

Note that we allow the proportionality constant to depend on the length of the shift.
We thus have the conditions

vi−m+N − vi + 4 c = bm , ∀i ∈ {1, . . . ,m} , (5.14)

vi−m − vi = bm , ∀i ∈ {m + 1, . . . , N } . (5.15)

It is then easy to see that the coefficients vi must be linear, vi = ri , and solving for
r , we find vi = −4ci/N . We have thus found that the level-1 generators

J(1)a = facb
N

∑

i<k

Jb,i Jc,k − 4c

N

N
∑

i=1

i Ja,i (5.16)

are indeed cyclic.
In transferring this finding to the continuous generators needed for the dis-

cussion of the Maldacena–Wilson loop, we need to consider the requirement of
reparametrization invariance as well. Note that the addition of a term of the form

− 4c

L(γ)

∫

dσ σ ja(σ)

is not sensible, since it does not give a reparametrization invariant expression when
applied to one. We can obtain a reparametrization invariant generator by replacing
the above term by the (no longer local) piece

− 4c

L(γ)

∫

dσ1 dσ2 θ21 |ẋ1| ja(σ2) , (5.17)

which reproduces the initial guess for an arc-length parametrization. By going
through the steps of the calculation (5.8), it is then easy to see that the completed
generator

J(1)a =
∫

dσ1 dσ2 θ21

(

2facb jb(σ1) jc(σ2) − 4c

L
|ẋ1| ja(σ2)

)

+ J(1)a,lo (5.18)
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is indeed cyclic up to level-0 generators. Here, J(1)a,lo denotes a generic local piece of
the form appearing in Eq. (5.5). We note however, that the above level-1 generator
no longer satisfies the Yangian algebra relation

[

J(0)a , J(1)b

] = fabc J(1)c , (5.19)

since reparametrization invariance required to make the counterpart of the coeffi-
cients vi curve-dependent. A short calculation reveals that the commutator with the
special conformal level-0 generators is no longer of the form above. This indicates
that the generator (5.18) does not provide a symmetry of the Maldacena–Wilson
loop. Indeed, it seems not to be possible to find a local piece J(1)a,lo such that the
generator (5.18) becomes a symmetry at weak coupling. We thus have to conclude
that, while an intriguing possibility in general, the restoration of the cyclicity of the
level-1 Yangian generator via the addition of an appropriate local term does not lead
to a Yangian invariance of the Maldacena–Wilson loop.

In the following chapters, the problem of having cyclic generators will be cir-
cumvented in another way, which is also crucial for the Yangian symmetry of super-
amplitudes [11]. For the superalgebra psu(2, 2|4), the Killing metric and hence the
dual Coxeter number c vanishes, such that the level-1 generators for the Yangian over
the superconformal algebra psu(2, 2|4) are automatically cyclic.

In order to obtain a Yangian symmetry over the superconformal algebra, one
needs to consider a supersymmetric extension of the Maldacena–Wilson loop into a
Wilson loop in superspace, for which the underlying level-0 symmetry is given by
psu(2, 2|4). It was observed in Ref. [6] that the Wilson loop in superspace can be
constructed from the requirement of supersymmetry and based on this insight the
first two orders in an expansion in Graßmann degrees were constructed. This was
sufficient to show the Yangian invariance of the one-loop expectation value at the
zero order in the Graßmann expansion.

The construction of the Wilson loop in superspace was subsequently completed
in Ref. [12] and the full level-1 Yangian invariance at the one-loop order was shown
in Ref. [13]. In parallel, the strong-coupling description of the Wilson loop in super-
space as well as its Yangian invariance were worked out in Ref. [14]. The extension
considered at strong coupling is also based on the requirement of supersymmetry and
thus lifts the minimal surfaces in AdS5 × S5 to minimal surfaces of the superstring
in the coset superspace

PSU(2, 2|4)
SO(1, 4) × SO(5)

, (5.20)

inwhich type IIB superstring theory inAdS5 × S5 is constructed [15]. The discussion
of these minimal surfaces and the consequences of the classical integrability [16] of
type IIB superstring theory in AdS5 × S5 are the subject we discuss in the remainder
of this thesis. We begin by studying type IIB superstring theory in AdS5 × S5 and
its classical integrability in Chap.6. Here, we also discuss the master symmetry
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appearing in this model. We then go on to discuss minimal surfaces ending on the
superconformal boundary of the above coset space and transfer the symmetries of
the superstring theory to these configurations in Chap. 7.
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Chapter 6
Semisymmetric Space Models

As a prerequisite for our discussion of superspaceWilson loops at strong coupling,we
discuss semisymmetric space models, which are the supersymmetric generalizations
of the symmetric space models discussed in Chap. 3. In addition to reviewing the
action and integrability following Refs. [1–3], we introduce the master symmetry
and discuss the so-called bonus symmetries. These are higher-level recurrences of
charges, which are not conserved at the level zero.

6.1 The String Action

The action for the type IIB Green–Schwarz superstring in AdS5 × S5 was first con-
structed inRef. [4] employing a coset construction similar to the one ofRef. [5],which
discussed the Green–Schwarz superstring in flat space. For a detailed description,
the reader is referred to the review [1], which we follow below.

We consider a semisymmetric space G/H, which means that the Lie superalgebra
g allows for a Z4-grading,

g = g(0) ⊕ g(1) ⊕ g(2) ⊕ g(3) ,
[
g(k), g(l)

] ⊂ g(k+l mod4) . (6.1)

The decomposition is based on an automorphism �, for which

g(0) = {X ∈ psu(2, 2|4) : �(X) = X} = h , (6.2)

and the other subspaces correspond to the eigenvalues i k . The casewe are interested in
here is the supergroup PSU(2, 2|4), for whichwe have introduced the above structure
in Sect. 2.1, but the discussion extends to other cases as well. For PSU(2, 2|4), the
bosonic subgroup is given by SU(2, 2) × SU(4) and corresponds to the isometry
group SO(2, 4) × SO(6) of AdS5 × S5. We discuss the fundamental representation
of the superconformal algebra in more detail in Appendix A.2 and the discussion
there shows that the Lie algebra g(0) of the gauge group is given by so(1, 4) ⊕ so(5),
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such that the supercoset indeed describes a superspacewithAdS5 × S5 as the bosonic
base.

Below, we will actually consider the field g to take values in the supergroup
SU(2, 2|4), such that we can employ the matrix representation discussed in Sect. 2.1
and Appendix A.2. We will see below that the model nonetheless corresponds to the
supercoset space

PSU(2, 2|4)
SO(1, 4) × SO(5)

. (6.3)

In order to construct the superstring action, we consider the Maurer–Cartan form

U = g−1dg = A(0) + A(1) + A(2) + A(3) , (6.4)

which we again split into its graded components. The action is then given by

S = −T

2

∫
tr

(
A(2) ∧ ∗A(2) + i κ̃ A(1) ∧ A(3)

)
. (6.5)

We note that we are considering a Euclidean worldsheet metric, which implies the
appearance of the factor i in front of the fermionic term, corresponding to the Wick-
rotation of the term εi j [3]. It is important to stress that we are not considering
a Wick rotation in the target space, but consider minimal surfaces for which the
induced metric and hence also the worldsheet metric has Euclidean signature. The
action becomes real after Wick rotating to a Minkowskian worldsheet metric, for
which the reality constraints imposed on g imply that the action is real. The relative
factor κ̃ between the bosonic and fermionic contributions in the action is fixed by
requiring kappa symmetry or integrability to satisfy κ̃2 = 1 and we will set κ̃ = 1 in
the following.

We note that the three-form appearing in the non-local description of the Wess–
Zumino term is exact in the case at hand [6], such that it can be reduced to the
two-dimensional integral appearing in the action (6.5).

Since the Wess–Zumino term does not couple to the worldsheet metric, the Vira-
soro constraints only involve the bosonic component A(2) of theMaurer–Cartan form
and are analogous to the ones for symmetric space models,

str
(
A(2)
i A(2)

j

) − 1
2 hi j h

kl str
(
A(2)
k A(2)

l

) = 0 . (6.6)

Let us now discuss the gauge symmetries of the above action. As already for
the symmetric space models, gauge transformations are given by g �→ gR, where
R(τ ,σ) is a function taking values in the gauge group H. For these, the Maurer–
Cartan form transforms as

A(0) �→ R−1A(0)R + R−1dR , A(i) �→ R−1A(i)R , (6.7)
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such that the action of semisymmetric space models is invariant. In the case of g
taking values in SU(2, 2|4), there is another gauge symmetry, which is given by the
transformation1

g �→ g eiβC = eiβCg , (6.8)

where β = β(τ ,σ) is local. We note that, since iC ∈ g(2), this transformation differs
from the gauge transformations described above. The Maurer–Cartan form trans-
forms as

A(2) �→ A(2) + idβ C , (6.9)

and the invariance of the action follows from the degeneracy of the metric,

str (Ta C) = 0 ∀ Ta ∈ su(2, 2|4) . (6.10)

Gauge-fixing the above gauge symmetry effectively reduces the model to the super-
coset space with G = PSU(2, 2|4).

Indeed, the global symmetry of the model is given by PSU(2, 2|4), since the left-
multiplication with the exponential of C corresponds to a gauge transformation. The
invariance under these transformations then follows as before from the invariance of
the Maurer–Cartan form under the transformations g �→ Lg.

Importantly, the above action has another gauge symmetry which is known as
kappa symmetry. For the flat-space superstring, kappa symmetry has been observed
in Ref. [7] and accounts can be found in textbooks on superstring theory such as
[8]. The kappa symmetry of the Green–Schwarz superstring generalizes the local
fermionic symmetries observed for superparticle actions [9, 10], which are also
called kappa symmetries. The appearance of kappa symmetry corresponds to the
fact that half of the fermionic degrees of freedom decouple from the superstring
theory equations of motion.

For the discussion and proof of kappa symmetry in the coset description employed
here, we refer the reader to Ref. [1], which in turn follows Refs. [11, 12]. Here, we
will be satisfied with just stating the kappa symmetry transformations. On the coset
representatives, a kappa symmetry transformation acts by the multiplication of a
local fermionic element from the right,

g �→ g · expκ , δκ U = dκ + [U , κ] . (6.11)

Here, κ takes values in the fermionic part of the superalgebra, κ = κ(1)+(3). The
kappa symmetry symmetry transformation also includes a variation of theworldsheet
metric, cf. Ref. [1]. The transformations constitute a local gauge symmetry of the
action provided that the supermatrix κ is given by

1Note that the generator C given in Appendix A.2 is defined in such a way that iC ∈ su(2, 2|4).
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κ(1) = A(2)
i,− K(1),i

+ + K(1),i
+ A(2)

i,− , κ(3) = A(2)
i,+ K(3),i

− + K(3),i
− A(2)

i,+ . (6.12)

Here, we employ the projections Pi j
± = 1

2

(
γi j ± i εi j

)
on the worldsheet and denote

V i
± = Pi j

± Vj = 1
2

(
γi j ± i εi j

)
Vj . (6.13)

Moreover, K denotes an arbitrary fermionic one form taking values in psu(2, 2|4)
andK(1),K(3) are its projections in the algebra. Again, the appearance of the factor of
i is related to working with a Euclidean world-sheet metric. It implies that the kappa
symmetry variations in this case typically violate the reality constraint imposed on
the algebra elements. This is not the case if one works with a Minkowskian signature
for the worldsheet metric.

We then turn to the derivation of the equations of motion. For a generic variation
δg, the Maurer–Cartan form transforms as δU = d

(
g−1δg

) + [
U, g−1δg

]
and hence

the variation of the action is given by

δS = −T
∫

tr
[(
d

(
g−1δg

) + [
U, g−1δg

]) ∧ (∗A(2) − i
2 A

(1)−(3)
)]

.

In this expression we denote

∗� = ∗A(2) − i
2 A

(1)−(3) , (6.14)

and employ (C.3) to get

δS = T
∫

tr
[
(d ∗ � +U ∧ ∗� + ∗� ∧U ) g−1δg

]
. (6.15)

If we regard the above combination to take values in su(2, 2|4), the equations of
motion are given by

d ∗ � +U ∧ ∗� + ∗� ∧U = iαC , (6.16)

due to the degeneracy of the metric. Here, α is a generic two-form taking values in
R. Over psu(2, 2|4), we have the equations of motion

d ∗ � +U ∧ ∗� + ∗� ∧U = 0 . (6.17)

We will work with the psu(2, 2|4)-case in our further discussion of the integrability
of the model, but return to the case of su(2, 2|4) in Sect. 6.4.

Let us now derive the Noether current associated to the G-symmetry of the model.
For the variation δεg = εg we note that δεU = g−1dεg, such that

δS = −T
∫

tr
[
g−1dεg ∧ (∗A(2) − i

2 A
(1)−(3)

)]
. (6.18)
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The associated Noether current is hence given by

j = −2g
(
A(2) + i

2 ∗ A(1)−(3)
)
g−1 = −2g� g−1 . (6.19)

It is simple to check that the above current is indeed conserved,

d ∗ j = −2d
[
g ∗ � g−1

] = −2g (d ∗ � +U ∧ ∗� + ∗� ∧U ) g−1 = 0 . (6.20)

In contrast to the bosonic case, however, the Noether current is not flat, although a
kappa-symmetry gauge exists in which it becomes flat [13, 14]. However, we prefer
not to exhaust our kappa symmetry gauge freedom in order to reach a flat Noether
current, since we may employ a different approach than the BIZZ construction to
obtain an infinite tower of conserved charges.

6.2 Integrability

The integrability of semisymmetric space models was shown in Ref. [15] by con-
structing a Lax connection as a deformation of the Maurer–Cartan form U . With
the Lax connection at hand, we can employ the methods explained in Chap. 3 to
construct an infinite tower of conserved charges.

Let us first construct the Lax connection in our conventions. In order to do this, it
is helpful to use the projections of the flatness condition dU +U ∧U = 0 and the
equations of motion (6.17) on the various graded components of the algebra. For the
flatness condition, we note the projections

dA(0) + A(0) ∧ A(0) + A(2) ∧ A(2) + [
A(1) ∧, A(3)

] = 0 ,

dA(2) + A(1) ∧ A(1) + A(3) ∧ A(3) + [
A(0) ∧, A(2)

] = 0 ,

dA(1) + [
A(0) ∧, A(1)

] + [
A(2) ∧, A(3)

] = 0 ,

dA(3) + [
A(0) ∧, A(3)

] + [
A(2) ∧, A(1)

] = 0 .

(6.21)

Here, we have introduced the notation

[
A∧, B

] = A ∧ B + B ∧ A , (6.22)

to abbreviate the frequently-occurring combinations A ∧ B + B ∧ A, which give
rise to a commutator of the components. In the following, we will sometimes find it
useful to work with the quantities

A(1)+(3) = A(1) + A(3) , A(1)−(3) = A(1) − A(3) , (6.23)
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rather than A(1) and A(3) and we note that the flatness conditions of the latter can be
rewritten as

dA(1)+(3) + [
A(1)+(3) ∧, A(0)

] + [
A(1)+(3) ∧, A(2)

] = 0 ,

dA(1)−(3) + [
A(1)−(3) ∧, A(0)

] − [
A(1)−(3) ∧, A(2)

] = 0 .
(6.24)

The two equations above are of course equivalent, since their projections on the
components g(1) and g(3) are the same.

For the equations of motion, we note that the projection on g(0) vanishes. For the
other projections, we find using the flatness condition (6.21)

d ∗ A(2) + [
A(0) ∧, ∗ A(2)] − i A(1) ∧ A(1) + i A(3) ∧ A(3) = 0 ,

[ ∗ A(2) ∧, A(3)] + i
[
A(2) ∧, A(3)] = 0 , (6.25)

[ ∗ A(2) ∧, A(1)] − i
[
A(2) ∧, A(1)] = 0 .

We can again rewrite the last two equations to find

d ∗ A(2) + [
A(0) ∧, ∗ A(2)

] − i
2

[
A(1)+(3) ∧, A(1)−(3)

] = 0 ,

[ ∗ A(2) ∧, A(1)+(3)
] − i

[
A(2) ∧, A(1)−(3)

] = 0 , (6.26)
[ ∗ A(2) ∧, A(1)−(3)

] − i
[
A(2) ∧, A(1)+(3)

] = 0 .

Again, we note that either of the above equations is equivalent to the two fermionic
projections of the equations of motion, since both take values in g(1) and g3.

In order to construct a Lax connection Lu , we follow Refs. [1, 15] and consider
the ansatz

Lu = A(0) + α1 A
(2) + α2 ∗ A(2) + α3 A

(1)−(3) + α4 A
(1)+(3) . (6.27)

We note that the above Lax connection has to reduce to the Lax connection (3.40)
of symmetric space models when we set the fermionic components zero, and so we
have α2

1 + α2
2 = 1, or using the parametrization employed in Chap.3,

α1 = 1 − u2

1 + u2
, α2 = − 2u

1 + u2
. (6.28)

We the consider the projections of the flatness condition

dLu + Lu ∧ Lu = 0 (6.29)
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on the graded components of the algebra in order to fix the coefficients α3 and α4.
For the projection on g(0) we get

dA(0) + A(0) ∧ A(0) + A(2) ∧ A(2) + (
α2
4 − α2

3

) [
A(1) ∧, A(3)

] = 0 , (6.30)

and comparing with the flatness condition (6.21) for A(0) gives the condition

α2
4 − α2

3 = 1 . (6.31)

Making use of the flatness condition for A(2), we find the projection on the component
g(2) to be given by

α2

(
d ∗ A(2) + [

A(0) ∧, A(2)
]) + (

α2
3 + α2

4 + 2α3α4 − α1
)
A(1) ∧ A(1)

+ (
α2
3 + α2

4 − 2α3α4 − α1
)
A(3) ∧ A(3) = 0 . (6.32)

The comparison with the equations of motion (6.17) then gives the relations

α2
3 + α2

4 + 2α3α4 − α1 = −iα2 , α2
3 + α2

4 − 2α3α4 − α1 = iα2 , (6.33)

or equivalently

α3 α4 = − i
2 α2 , α2

3 + α2
4 − α1 = 0 . (6.34)

Given the form (6.28) of the coefficients of the bosonic components, we can already
solve for the coefficients α3 and α4 for which we obtain

α3 = iu√
1 + u2

, α4 = 1√
1 + u2

. (6.35)

It remains to check that with these coefficients also the fermionic parts of the flatness
condition vanish. Using the flatness conditions (6.24), we find

dLu + Lu ∧ Lu = α2α4
[ ∗ A(2) ∧, A(1)+(3)

] + α3(α1 + 1)
[
A(2) ∧, A(1)−(3)

]

+ α2α3
[ ∗ A(2) ∧, A(1)−(3)

] + α4(α1 − 1)
[
A(2) ∧, A(1)+(3)

]
.

(6.36)

Using the relations (α1 + 1) = 2α2
4 and (α1 − 1) = 2α2

3 as well as α3α4 = − i
2α2,

we get

iα3(α1 + 1) = α2α4 , iα3(α1 − 1) = α2α3 , (6.37)
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such that dLu + Lu ∧ Lu indeed vanishes due to the equations of motion (6.27). In
summary, we have found the Lax connection of semisymmetric space models to be
given by

Lu = A(0) + 1 − u2

1 + u2
A(2) − 2u

1 + u2
∗A(2) + iu√

1 + u2
A(1)−(3) + 1√

1 + u2
A(1)+(3).

(6.38)

Employing the angular parametrization,

eiθ = 1 − iu

1 + iu
, (6.39)

we have the Lax connection

Lθ = A(0) + cos θ A(2) + sin θ ∗A(2) − i sin θ
2 A(1)−(3) + cos θ

2 A(1)+(3). (6.40)

For the construction of the conserved charges, we can then proceed as before. We
transform the Lax connection to obtain the flat connection

�u = g(Lu −U )g−1

= − 2u2

1 + u2
a(2) − 2u

1 + u2
∗a(2) + iu√

1 + u2
a(1)−(3) + 1 − √

1 + u2√
1 + u2

a(1)+(3) .

(6.41)

Here, we have introduced the abbreviations

a(k) = g A(k) g−1 (6.42)

for the frequently-occurring conjugations of the projections of the Maurer–Cartan
formwith g. This form of the Lax connection is convenient to derive an infinite tower
of conserved charges.

We can also apply it to convince ourselves that the Noether current of semisym-
metric space models is generically not flat. If we express the above Lax connection
in terms of the Noether current, we obtain

�u = u

1 + u2
(∗ j + u j) + i u2

1 + u2
∗a(1)−(3)

+ iu(
√
1 + u2 − 1)√
1 + u2

a(1)−(3) + 1 − √
1 + u2√

1 + u2
a(1)+(3) . (6.43)

Expanding the above expression in u,
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�u = u ∗ j + u2
(
j + i ∗ a(1)−(3) − 1

2a
(1)+(3)

) + O(u3)

= u ∗ j − 2u2
(
a(2) + 1

4a
(1)+(3)) + O(u3) ,

(6.44)

we find that the flatness condition d�u + �u ∧ �u gives current conservation as well
as the relation

d j + j ∧ j = 1
2 da

(1)−(3) + i d ∗ a(1)−(3) , (6.45)

showing that the Noether current is not flat, as claimed above.
For the construction of the conserved charges, we again consider the auxiliary

linear problem

dχu = χu �u , χu(z0) = 1 . (6.46)

or the associated monodromy

tu = −→
Pexp

(∫

γ

�u

)
. (6.47)

Here, we again consider the curve γ to cover the whole period of σ at constant τ .
The τ -dependence of the monodromy tu is then captured by the evolution equation

∂τ tu(τ ) = [
tu(τ ) , �u,τ (τ , 0)

]
. (6.48)

This equation implies that the matrices tu at different values of τ are related by a
similarity transformation, such that all eigenvalues are conserved charges. In the case
of a minimal surface, we can contract the curve γ to a point, at which we then find
tu = 1, which extends to all other values of τ by the similarity transformations.

The expansion of the monodromy gives the conserved charges (we restrict to
conformal gauge)

Q(0) =
∫

dσ jτ , (6.49)

Q̃(1) =
∫

dσ1 dσ2 θ21 jτ (σ1) jτ (σ2) − 2
∫

dσ
(
a(2)

σ + 1
4a

(1)+(3)
σ

)
, . . . (6.50)

6.3 Master Symmetry

The master symmetry discussed for symmetric space models in Ref. [16] was
extended shortly afterwards to the pure spinor description of the superstring in
AdS5 × S5 [17]. Indeed, the generalization to semisymmetric space models is
straight-forward, as we shall see below.
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As before, we introduce a deformation of the field g by demanding that its asso-
ciated Maurer–Cartan form be the Lax connection Lu ,

g−1
u dgu = Lu , gu(z0) = g(z0) . (6.51)

Again, we note that due to the use of a Euclidean world-sheet metric, there is no
value of the spectral parameter except the undeformed case u = 0, for which the
Lax connection is real. The deformations gu will thus generically violate the reality
constraints for SU(2, 2|4) in the Euclidean case.

We need to show that the above deformation leaves the action, the equations of
motion and the Virasoro constraints invariant as in the bosonic case. The invariance
of the Virasoro constraints (6.6) can be transferred directly, since they only involve
the component A(2) of the Maurer–Cartan form and the bosonic parts of the Lax
connection are deformed in the same way as for the symmetric space models.

By the same reasoning, we need only consider the fermionic part of the superstring
action to show its invariance. Here, we note that the fermionic components of the
Lax connection are given by

L(1)
u = 1 + iu√

1 + u2
A(1) , L(3)

u = 1 − iu√
1 + u2

A(3) , (6.52)

such that

str
(
L(1)
u ∧ L(3)

u

) = (1 + iu)(1 − iu)

(1 + u2)
str

(
A(1) ∧ A(3)) = str

(
A(1) ∧ A(3)) . (6.53)

This establishes the invariance of the superstring action (6.5) under the master sym-
metry transformation (6.51).

The invariance of the equations of motion is similarly direct. We note that upon
deforming the Maurer–Cartan form U into the Lax connection Lu , the quantity �

introduced above is deformed to

∗�u = ∗L(2)
u − i

2 L
(1)−(3)
u

= 2u

1 + u2
A(2) + 1 − u2

1 + u2
∗ A(2) − i

2
√
1 + u2

A(1)−(3) + u

2
√
1 + u2

A(1)+(3) .

(6.54)

We then need to check that the equations of motion are still satisfied,

d ∗ �u + [
Lu ∧, ∗ �u

] = 0 . (6.55)

In order to see this, it is convenient to split the above combination into two terms,

d ∗ �u + [
Lu ∧, ∗ �u

] = d ∗ �u + [
A(0) ∧, ∗ �u

] + [
Lu − A(0) ∧, ∗ �u

]
.
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For the first term, we find

d ∗ �u + [
A(0) ∧, ∗ �u

] = 2u

1 + u2

(
dA(2) + [

A(0) ∧, A(2)]
)

+ 1 − u2

1 + u2

(
d ∗ A(2) + [

A(0) ∧, ∗ A(2)]
)

− i

2
√
1 + u2

(
dA(1)−(3) + [

A(0) ∧, A(1)−(3)]
)

+ u

2
√
1 + u2

(
dA(1)+(3) + [

A(0) ∧, A(1)+(3)]
)

. (6.56)

For the other term, we find using the fermionic parts of the equations of motion
(6.27),

[
Lu − A(0) ∧, ∗ �u

] = 2u

1 + u2

(
A(1)∧ A(1) + A(3)∧ A(3)

)
− i(1 − u2)

(1 + u2)

[
A(1)−(3)∧, A(1)+(3)]

+ i

2
√
1 + u2

[
A(2) ∧, A(1)−(3)] + u

2
√
1 + u2

[
A(2) ∧, A(1)+(3)] . (6.57)

We can then employ the flatness conditions (6.21) and (6.24) as well as the bosonic
part of the equations of motion (6.17) in order to see that the two contributions cancel
each other. The master symmetry transformation thus indeed preserves the equations
of motion.

We can then carry over many of the results derived in Sects. 3.4 and 3.6. For
example, we may rewrite the master symmetry transformation as

gu = χu g , dχu = χu�u , χu(z0) = 1 , (6.58)

and the master symmetry variation is again identified as

δ̂ g = χ(0) g , dχ(0) = ∗ j , χ(0)(z0) = 0 . (6.59)

Moreover we note that the master symmetry transformation again commutes with
the underlying G-symmetry and that changing the point where the initial condition
is imposed, corresponds to a G-symmetry. In order to carry over the property that
the concatenation of two master symmetries gives a master symmetry with differ-
ent spectral parameter, we need to consider the deformation of the Lax connection
(Lθ1)θ2 . We can show by direct calculation that

(Lθ1)θ2 = Lθ1+θ2 .

In fact, this can be seen from noting that it holds for the bosonic components of the
Lax connection and that the coefficients of its fermionic components are completely
determined by the requirement of flatness. We thus note that

(
Mθ1 ◦ Mθ2

)
(g) = Mθ1+θ2(g) , (6.60)
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with Mθ(g) = gθ. By the same reasoning as the one presented around Eq. (3.76), we
then find the master variations of gu and χu to be given by

δ̂gu = (1 + u2)
d

du
gu , δ̂χu = (

1 + u2
) d

du
χu − χu · χ(0) . (6.61)

We can also apply the master symmetry to obtain a one-parameter family of con-
served currents, which are the Noether currents associated to the deformed solution
gu ,

ju = −2gu �u g−1
u = χu

(
2(u2 − 1)

1 + u2
a(2) + 4u

1 + u2
∗ a(2)

− i√
1 + u2

∗ a(1)−(3) + u√
1 + u2

∗ a(1)+(3)

)
χ−1
u . (6.62)

The relation between the associated conserved charges

Qu =
∫

∗ ju (6.63)

and the charges obtained from the expansion of the monodromy is the same as for
the symmetric space models. Again, we note that the master symmetry variation
acts as a raising operator on the charges obtained from the expansion of the above
one-parameter family,

Qθ =
∞∑

n=0

θn

n! Q
(n) , δ̂ Q(n) = Q(n+1) . (6.64)

Last, we note that the conserved charge associated to the master symmetry itself is
again the Casimir of the G-symmetry charges.

For the symmetric space models, we have discussed an analogous procedure to
infer a one-parameter family of symmetry variations by using the master symmetry,
which was called the integrable completion of the underlying symmetry variations.
This structure ismore difficult to transfer to semisymmetric spacemodels and remains
to be studied.

6.4 Bonus Symmetries

Apart from the Yangian Y [psu(2, 2|4)] symmetries [18, 19], the S-matrix ofN = 4
supersymmetric Yang–Mills theory has a so-called bonus symmetry [20], the level-1
recurrence of the hypercharge generator, which is itself not a symmetry. A similar
situation has been observed before the discovery of the bonus symmetry for the
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AdS5 × S5 worldsheet S-matrix,which isYangian invariant [21, 22] and also exhibits
an additional symmetry at level-1 [23–25], the so-called secret symmetry.

In the classical string theory, the bonus symmetry corresponds to the part pro-
portional to C of the level-1 Yangian charge. Such charges have been constructed in
the pure spinor formalism in all odd levels of the Yangian [26]. Below, we construct
conserved charges of this kind in all higher levels of the Yangian. The presentation
differs slightly from the one given in Ref. [27] as it draws some inspiration from the
master symmetry discussed above.

In order to construct these conserved charges, we enforce no constraint on the
gauge symmetry associated to the central chargeC , and hence we have the equations
of motion (6.16),

d ∗ � +U ∧ ∗� + ∗� ∧U = i αC . (6.65)

This implies that the C-part of the Noether current j is no longer conserved,

d ∗ j = −2g (d ∗ � + ∗� ∧U +U ∧ ∗�) g−1 = −2i αC , (6.66)

and, correspondingly, neither is the C-part of the associated conserved current Q(0).
For the conserved current Q(1), however, a direct calculation shows that also the
C-part of this charge is conserved. The charge is given by

Q(1) =
∫

dσ1 dσ2 θ21 [ jτ (σ1), jτ (σ2)] − 4
∫

dσ
(
a(2)

σ + 1
4a

(1)+(3)
σ

)
, (6.67)

and its conservation follows from noting that, while the current conservation condi-
tion is altered as above, the condition (6.45) describing the deviation of the Noether
current from the flatness condition is not altered by the inclusion of the central charge.
We may rewrite this condition as

∂τ a
(2)
σ − ∂σ a

(2)
τ + 1

4

(
∂τ a

(1)+(3)
σ − ∂σ a

(1)+(3)
τ

) = 1
2 [ jτ , jσ] , (6.68)

and together with the altered current conservation condition, it is easy to show that
Q(1) is a conserved charge. Here, the appearance of the C-term is not relevant, since
it only appears inside commutators.

In order to generalize the above finding to higher-level charges, we consider the
monodromy tu . We note that the Lax connection is no longer flat given the equations
of motion (6.65) and hence the auxiliary linear problem is no longer well-defined.
The evolution equation for the monodromy thus no longer follows from the auxiliary
linear problem and so we need to take a different approach.

Concretely, we note that the Lax connection (6.38) satisfies the condition

dLu + Lu ∧ Lu = − 2iu

1 + u2
αC . (6.69)
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In order to see this, note that the Maurer–Cartan form is still flat, dU +U ∧U = 0,
and since iC ∈ g(2), we only need to modify the equation involving d ∗ A(2). The
above finding transfers to the transformed Lax connection �u , for which we have

d�u + �u ∧ �u = − 2iu

1 + u2
αC , (6.70)

or in coordinates,

∂τ �u,σ − ∂σ �u,τ + [
�u,τ , �u,σ

] = − 2i u

1 + u2
α(τ ,σ)C . (6.71)

Here, we have set α = α(τ ,σ) dτ ∧ dσ. For the τ -dependence of the monodromy
tu , we then find

∂τ tu = ∂τ
−→
Pexp

( ∫ 2π

0
dσ �u,σ

)

=
∫ 2π

0
dσ

−→
Pexp

(∫ σ

0
dσ′ �u,σ

)
∂τ �u,σ

−→
Pexp

(∫ 2π

σ

dσ′ �u,σ

)

=
∫ 2π

0
dσ ∂σ

[−→
Pexp

(∫ σ

0
dσ′ �u,σ

)
�u,τ

−→
Pexp

(∫ 2π

σ

dσ′ �u,σ

)]

− 2i u

1 + u2

∫
dσ α(τ ,σ)C

−→
Pexp

( ∫ σ

0
dσ′ �u,σ

)−→
Pexp

(∫ 2π

σ

dσ′ �u,σ

)

= [
tu, �u,τ (τ , 0)

] − 2i u

1 + u2
α̃(τ )C tu . (6.72)

Here, we have abbreviated

α̃(τ ) =
∫

dσ α(τ ,σ)

in the last step. We can use the above evolution equation to show that all expansion
coefficients of the monodromy are proportional to the central charge. We have seen
this explicitly for the coefficient t (1) = Q(0) above and it follows by induction for
the higher coefficients: For the τ -dependence of the nth order coefficient, we find

∂τ t
(n) =

n−1∑

m=1

[
t (m), � (n−m)

τ (τ , 0)
] − i α̃(τ )

n−1∑

m=0

cm C t (m) . (6.73)

By the induction hypothesis and noting that C2 = C , we thus have ∂τ t (n) ∝ C . At
this point, we make use of the fact that we are dealing with a minimal surface2 with

2The results presented here extend to the field theory case (i.e. imposing boundary conditions at
spatial infinity), which is discussed in Ref. [26]. The conservation condition for the quasi-momenta
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disk topology, which allows us to conclude that t (n) ∝ C as well. With this finding
established, we can simplify the evolution equation to

∂τ tu = − 2i u

1 + u2
α̃(τ )C tu . (6.74)

We note now that the conserved level-1 charge discussed above was obtained
from the application of the master symmetry to the G-symmetry charge rather than
the expansion of the monodromy, from which it differs by adding a multiple of
(Q(0))2. We have established the connection between these charges for symmetric
spacemodels in Eq. (3.112) and building on this finding, it seems sensible to consider
the combination

fu = (1 + u2) ṫu t
−1
u .

Making use of Eq. (6.74), we find

∂τ fu = −2i u α̃(τ ) [C, fu] − 2i (1 + u2) ∂u

(
u

1 + u2

)
α̃(τ )C

= 1 − u2

1 + u2
∂τ t

(1) , (6.75)

where we have inserted the first order of Eq. (6.74) in order to replace α̃(τ ) by ∂τ t (1),
which captures the non-conservation of the C-term of the G-symmetry charge. We
have thus found that also the C-part of the quantity

f̃u = (1 + u2) ṫu t
−1
u − 1 − u2

1 + u2
t (1) (6.76)

is conserved.
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Chapter 7
Minimal Surfaces in Superspace

We now turn to the supersymmetric generalization of the strong-coupling description
of the Maldacena–Wilson loop, which is obtained by replacing the minimal area in
AdS5 × S5 by the area of a minimal surface in the supercoset space

SU(2, 2|4)
SO(1, 4) × SO(5)

,

which we again renormalize appropriately. We thus describe the expectation value
of the super Maldacena–Wilson loop at strong coupling by

〈W(γ)〉 = e−
√

λ
2π Aren(γ) , (7.1)

where the area functional A is based on the superstring action discussed in the
last chapter. Appropriate boundary conditions for this minimal surface have been
suggested in Ref. [1] based on a set of generalized Poincaré coordinates for the
supercoset space. Following their approach, we assume the boundary curve to take
values in a N = 4 non-chiral superspace, i.e. we have a parametrization

(
xμ(σ), θ A

α (σ),�θAα̇(σ), nI (σ)
)
. (7.2)

We will then see that the divergence of the minimal area is proportional to the super-
length of the curve, i.e. we have

Amin(γ)
∣∣
y�ε

= L(γ)

ε
+ Aren(γ) , L(γ) =

∫
dσ|π(σ)| . (7.3)

Here, πμ = ẋμ + i tr
(�̇θσμθ − �θσμθ̇

)
describes the supermomentum of a superpar-

ticle moving along the respective contour in the boundary superspace and we have
regulated the minimal area by imposing a cut-off ε in the coordinate y of AdS5.
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With the description of the minimal surfaces in superspace understood, the Yan-
gian symmetry at strong coupling can be established in the same way as in Chap. 4
for the minimal surfaces in AdS5. This requires to determine the first coefficients
of the expansion of the minimal surface around the conformal boundary in order to
evaluate the conserved charges derived in the last chapter.

7.1 Poincaré Coordinates for the Supercoset

We begin by introducing a generalization of Poincaré coordinates for the supercoset
space by employing the coset representatives introduced in Ref. [1],

g(X, N , y,�,ϑ) = eX ·P e�α
A QA

α+��Aα̇
�Qα̇A

eϑA
α Sα

A+�ϑα̇A �SAα̇ M(N ) yD . (7.4)

Here (X, y) and N are bosonic coordinates parametrizing the AdS5 and the S5 part,
respectively. The 32 fermionic degrees of freedom are parametrized by theGraßmann
odd coordinates �, ��,ϑ and �ϑ. The spherical part of the coset space is parametrized
in the same way as in Sect. 4.5, but written as a (4|4) supermatrix,

M(N ) =
(
14 0
0 m(N )

)
. (7.5)

This specific choice of coset parametrization is not at all arbitrary. A crucial aspect
is that all exponents have definite weight and that they are ordered by these weights.
Moreover, the y-coordinate, which vanishes on the conformal boundary, is associ-
ated to the dilatation generator and appears at the right-most position. This form is
important for the discussion of the superconformal boundary as we shall see below.

The Maurer–Cartan form for the above choice of coset representatives has been
partially derived in Ref. [1] in so far as it was required for their discussion of the
superconformal boundary. In order to determine the expansion of theminimal surface
into the bulk space, we need the complete expression and so we derive it below. The
calculation is lengthy but straightforward. Abbreviating

� := �α
A QA

α + ��Aα̇
�Qα̇A , η := ϑA

α Sα
A + �ϑα̇A �SAα̇ , (7.6)

we need to compute

g−1dg = y−D M−1 e−η
(
dX · P + e−�de�

)
eη M yD

+ y−D M−1
(
e−ηdeη

)
M yD + M−1dM + dy

y
D .

We note that

e−�de� = d� + i
(
�α

A d��Aα̇ − d�α
A ��Aα̇

)
P α̇α ,
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and a similar formula holds for e−ηdeη . Hence, we only have to calculate the remain-
ing conjugations. Most of them can be carried out by using Hadamard’s lemma,

eA B e−A =
∞∑

n=0

1

n! [A, B](n) , [A, B](n) = [
A, [A, B](n−1)

]
, [A, B](0) = B .

Here it is crucial that the exponents X · P , � and η have a definite non-zero weight,
such that the above expansion breaks off after at most four orders. This follows from
noting that the weights are additive,

[D, [A, B]] = (�A + �B) [A, B] ,

and the fact that for su(2, 2|4) we only have half-integer weights ranging from −1
to 1. In order to do the conjugations with M(N ), we consider the supermatrices
explicitly. Using the definitions given in Appendix A.2, we note

M−1
(
�α

A QA
α
)
M =

⎛

⎝
12 0 0
0 12 0
0 0 m−1

⎞

⎠

⎛

⎝
0 0 2�

0 0 0
0 0 0

⎞

⎠

⎛

⎝
12 0 0
0 12 0
0 0 m

⎞

⎠

=
⎛

⎝
0 0 2�m
0 0 0
0 0 0

⎞

⎠ = (
�α

Bm A
B

)
QA

α = (�m)α
A QA

α . (7.7)

Similarly, one finds:

M−1 (�ϑα̇A �SAα̇

)
M = (�ϑm)α̇A �SAα̇ , M−1 (��Aα̇

�Qα̇A
)
M = (

m−1��)
Aα̇

�QAα̇ ,

M−1
(
ϑA

α Sα
A
)
M = (

m−1ϑ
)
A

αSα
A , M−1

(
� B

A RA
B

)
M = (

m−1�m
) B

A RA
B .

(7.8)

The conjugations with yD again follow from the weights of the generators. For
[D, T�] = �T�, we get

y−D T� yD = y−� T� . (7.9)

Carrying out all conjugations in this way, we arrive at

U = g−1 dg = − rαα̇

2y
P α̇α + σ

y
D + 1√

y

(
εα

A QA
α +�εAα̇ �Qα̇A

)
+ λ β

α M α
β + λ̄

β̇
α̇ M̄ α̇

β̇

+ � B
A RA

B + γ C + √
y
(
χA

α Sα
A + χ̄α̇A �SAα̇

)
− y

2
κα̇α Kαα̇ + M−1dM (7.10)

Here, we defined the coefficients
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rαα̇ = dXαα̇ + 2i
(
d� �� − � d��)

αα̇ ,

rμ = dXμ − i tr
(
d��σμ� − ��σμd�

)
,

σ = dy + 2y tr
(
d�� �ϑ + ϑ d�

)
,

γ = tr
(
ϑ (2d� + ζ) − (

2d�� + �ζ) �ϑ)
,

λ β
α = −i [(2d� + ζ)ϑ] β

α ,

ζα
A = i rαα̇

�ϑα̇A ,

�ζAα̇ = −i ϑA
α rαα̇ ,

εα
A = [(d� + ζ)m]α

A ,

�εAα̇ = [
m−1

(
d�� + �ζ )]

Aα̇
,

�λβ̇
α̇ = i

[�ϑ (
2d�� + ζ̄

)]β̇

α̇
.

(7.11)

The remaining terms are given by

�A
B = [

m−1
(
ϑ

(
d� + 1

2ζ
) − (

d�� + 1
2 ζ̄

) �ϑ)
m

]
A

B ,

χA
α = [

m−1
[(
4ϑ

(
d� + 1

3ζ
) − 2

(
d�� + 1

3 ζ̄
) �ϑ)

ϑ + dϑ
]]

A
α ,

�χα̇A = [[
d�ϑ + �ϑ (

4
(
d�� + 1

3 ζ̄
) �ϑ − 2ϑ

(
d� + 1

3ζ
))]

m
]α̇A

,

κα̇α = [−8i �ϑ [(
d�� + 1

4 ζ̄
) �ϑ − ϑ

(
d� + 1

4ζ
)]

ϑ − 2i
(
d�ϑ ϑ − �ϑ dϑ

)]α̇α
.

(7.12)

Here and in the further calculations, we have assigned the following canonical index
positions:

�α
A , ��Aα̇ for variables conjugate to QA

α , �Qα̇A ,

ϑA
α , �ϑα̇A for variables conjugate to Sα

A , �SAα̇ .

The raising or lowering of a four-dimensional spinor index is always indicated explic-
itly. This notation allows us towrite the index contractions in terms ofmatrix products
as it is done above, see also Appendix A.1. For our further calculations we note the
Z4-decomposition of U = g−1dg using the formulas given in Appendix A.2 for the
graded components of the generators,

A(0) = −rαα̇ − y2 καα̇

4y

(
P α̇α − K α̇α

) + λ β
α M α

β

+�λβ̇
α̇

�M α̇
β̇

+ (
� B

A RA
B + M−1dM

)(0)
, (7.13)

A(2) = −rαα̇ + y2 καα̇

4y

(
P α̇α + K α̇α

) + σ

y
D + γ C

+ (
� B

A RA
B + M−1dM

)(2)
, (7.14)

A(1)+(3) = 1√
y

(
εα

A QA
α + �εAα̇

�Qα̇A + y
(
χA

α Sα
A + �χα̇A �SAα̇

))
, (7.15)

A(1)−(3) = i√
y

(
εα

A KAB SαB − �εAα̇ K AB �S α̇
B

+ y
(
χA

α K AB QBα − �χAα̇ KAB �QB
α̇

) )
. (7.16)
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The matrix K = (
K AB

) = (
KAB

)
appears explicitly in the Z4 decomposition and

we recall that it is given by

K =

⎛

⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎟
⎠ . (7.17)

7.2 The Superconformal Boundary

In the case of the Maldacena–Wilson loop, the minimal surface is required to end on
the respective curve on the conformal boundary of AdS5. We have seen in Chap.2
that the discussion of the conformal boundary is simplified in Poincaré coordinates,
where it is simply given by, where we simply approach theMinkowski space at y = 0
in the boundary limit. In order to discuss the boundary conditions for the minimal
surfaces in superspace corresponding to the Wilson loop in superspace, we employ
the generalized Poincaré coordinates for the supercoset introduced above.

There are two important aspects that need to be considered in the construction of
the conformal boundary of our superspace. The geometric relation between bulk and
boundary space requires that the super-isometries of the bulk space should reduce
to superconformal transformations on the conformal boundary space when taking
the boundary limit. Moreover, we should impose the right number of boundary con-
ditions on the bulk coordinates in order to determine a minimal surface. For the
bosonic coordinates, the equations of motion are second order differential equations
and we impose a boundary condition for all bosonic coordinates. For the fermionic
coordinates, the equations of motion are first order differential equations and we will
thus only impose boundary conditions on half of the fermionic coordinates.

Let us first consider AdS5 once more. As we have seen in Chap.4, the coset
parametrization

g1(X, y) = eX ·P yD (7.18)

provides Poincaré coordinates on AdS5 � SO(2, 4)/SO(1, 4). In this case, the Lie
algebra so(2, 4) is split as

so(2, 4) = h ⊕ m , h = span
{
Pμ − Kμ, Mμν

}
, m = span

{
Pμ + Kμ, D

}
.

Wecan similarlywrite the boundaryMinkowski space as the coset space SO(2, 4)/H,
whereH is the subgroupofSO(2, 4)generatedby the algebrah = span{Kμ, Mμν, D}.
Note that in thisway,we are not employing the coset description of a symmetric space
for the boundary space, and the splitting of the Lie algebra,
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so(2, 4) = span{Kμ, Mμν, D} ⊕ span{Pμ} , (7.19)

does not satisfy the algebra relations (3.8). The coset space is naturally parametrized
by

g2(x) = ex ·P . (7.20)

For either coset, an isometry or conformal transformation is obtained from the left-
multiplication with a generic group element t = et ,

t · g1(X, y) = g1(X
′, y′) · h(X, y) , t · g2(x) = g2(x

′) · h(x) . (7.21)

Here, h = eh are compensating gauge transformations taking values in the respective
gauge groups. Infinitesimally, we then have

δg1(X, y) = t · g1 − g1 · h(X, y) = ∂μg1 δtX
μ + ∂yg1 δt y ,

δg2(x) = t · g2 − g2 · h(x) = ∂μg2 δtx
μ .

(7.22)

Consider now for example a transformation parametrized by t = εμKμ. One com-
putes easily that the coordinates of the two coset spaces transform as

δε·K Xμ = X2 εμ − 2 (ε · X) Xμ + y2 εμ , δε·K y = −2y (ε · X) ,

δε·K xμ = x2 εμ − 2 (ε · x) xμ .
(7.23)

We recognize that the transformations indeed agree in the boundary limit y → 0 if
we identify the X coordinates. Before turning to the superspace, we reformulate the
criterion that the isometries of the bulk space reduce to conformal transformations
on the boundary space for a more general situation.

Assume we have two coset spaces M1 = G/H1 and M2 = G/H2 with the same
group G but different stability groups H1 and H2. Correspondingly, we have two
decompositions of the Lie algebra g,

g = h1 ⊕ m1 , g = h2 ⊕ m2 . (7.24)

We do not assume either of the two cosets to be a symmetric space and impose no
further restrictions on the decomposition. Let us assume that the coset space M1

represents the bulk space and the coset space M2 the boundary space. Then we have
dim(H1) < dim(H2), but we will not assume that H1 is a subset of H2. Furthermore,
we assume that we can find coset representatives g1(xm, yi ) for M1 and g2(xm) for
M2, which satisfy the relation

g1(x, y) = g2(x) h2(x, y) , (7.25)
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where h2(x, y) ∈ H2. In particular, theMaurer–Cartan forms for the twoparametriza-
tions are related by

U1 = g−1
1 dg1 = h2U2h

−1
2 + h−1

2 dh2 . (7.26)

Under the left-multiplication by some group element t = et ∈ G, the coset represen-
tatives transform as

g(Z) �→ g(Z ′) = tg(Z)h(Z) , δg(Z) = tg(Z) − g(Z)h(Z) . (7.27)

In order to extract the coordinate variations δZM , we rewrite the above transformation
as

δZMUM = δZMg(Z)−1∂Mg(Z) = g(Z)−1 (tg(Z) − g(Z)h(Z)) . (7.28)

We are interested in the difference of the variations of the coordinates xm and begin
by evaluating the above variation for the first coset space. For the coordinates of the
bulk coset space, ZM = (xm, yi ), we find using the relation (7.26)

δ1Z
MU1,M = δ1x

m h−1
2 U2,mh2 + δ1x

m h−1
2 ∂mh2 + δ1y

i h−1
2 ∂i h2 , (7.29)

which we rearrange as

δ1x
mU2,m = δ1Z

M h2U1,Mh
−1
2 − δ1x

m (∂mh2) h
−1
2 − δ1y

i (∂i h2) h
−1
2 . (7.30)

We can further rewrite the above relation by plugging in (7.28),

δ1x
mU2,m = h2 g−1

1 (tg1 − g1h1) h
−1
2 − δ1x

m (∂mh2) h
−1
2 − δ1y

i (∂i h2) h
−1
2

= g−1
2 tg2 + h2h1h

−1
2 − δ1x

m (∂mh2) h
−1
2 − δ1y

i (∂i h2) h
−1
2 . (7.31)

This form is suitable to compare with the variation obtained for the other coset.
Evaluating the relation (7.28) for the coset space M2 gives

δ2x
mU2,m = g−1

2 tg2 − h2 . (7.32)

For the difference between the variations of the coordinates we thus have

�
(
δxm

)
U2,m = (

δ1x
m − δ2x

m
)
U2,m

= h2h1h
−1
2 + h2 − δ1x

m (∂mh2) h
−1
2 − δ1y

i (∂i h2) h
−1
2 . (7.33)

We can read off �(δxm) by projecting the above relation on m2. Only the first term
on the right-hand side of the above equation contains contributions in m2 and hence
we have
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�
(
δxm

)
U2,m

∣∣
m2

= h2h1h
−1
2

∣∣
m2

. (7.34)

We thus note the following criterion for the condition that the variations obtained
from the two coset constructions agree in the boundary limit y → 0:

�
(
δxm

) y→0−−→ 0 ⇔ h2h1h
−1
2

∣∣
m2

y→0−−→ 0 . (7.35)

To understand this formulation of the boundary criterion better, let us consider AdS5
once more. The Maurer–Cartan form for the bulk coset space is given by

U1 = g−1
1 dg1 = dXμ

y
Pμ + dy

y
D . (7.36)

For the generator t = ε · K , we thus have the variation

δε·K ZM U1,M = 1

y

(
δε·K Xμ Pμ + δε·K y D

) = y−De−X ·P (ε · K ) eX ·P yD − h1 (7.37)

= 2 (ε · X) Xμ − X2 εμ

y
Pμ + 2 (ε · X) D + 2 εμxνMμν + y εμKμ − h1 .

We read off that

h1 = 2 εμxνMμν + y εμ
(
Kμ − Pμ

)
(7.38)

in order to cancel the contributions proportional to Kμ and Mμν . For the situation at
hand, we have h1 = yD and m2 = span{Pμ} and hence we have

h2h1h
−1
2

∣∣
m2

= yD
(
2 εμxνMμν − y εμ

(
Kμ − Pμ

))
y−D

∣∣
m2

= y2εμPμ , (7.39)

which indeed vanishes in the boundary limit y → 0.
With these preparations, we turn to the discussion of the conformal boundary of

the supercoset space

PSU(2, 2|4)
SO(4, 1) × SO(5)

.

As a candidate for the conformal boundary, we consider the coset PSU(2, 2|4)/H2,
where H2 is the subgroup generated by the subalgebra

h2 = span
{
Mμν, D, Kμ, Sα

A,�SAα̇

} ⊕ so(5) . (7.40)

A suitable coset representative is given by [1],

g2(x, θ, N ) = ex ·P eθα
A QA

α+�θAα̇
�Qα̇A

M(N ) . (7.41)
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The boundary superspace has only half as many fermionic degrees of freedom as the
bulk space, which is due to the fermionic part of the superstring equations of motion
being first order differential equations. They thus require less boundary conditions
in order to determine a minimal surface solution. We will see explicitly in Sect. 7.3
that the respective boundary conditions determine the minimal surface in the bulk
space.

Following Ref. [1], we now apply the criterion (7.35) to show that the bulk isome-
tries reduce to superconformal transformations on the boundary space. The relation
between the coset representatives of bulk and boundary space is given by g = g2h2,
where

h2 = M(N )−1 eϑA
α Sα

A+�ϑα̇A �SAα̇ M(N ) yD = e(m−1ϑ)A
α Sα

A+(�ϑm)α̇A �SAα̇ yD . (7.42)

Consider now an isometry of the bulk space parametrized by t ∈ psu(2, 2|4). The
coset representative transforms according to (7.27),

g−1 δg = g−1 t g − h1 , h1 ∈ h1 = span{Mμν, Pμ − Kμ} ⊕ so(5) , (7.43)

and we want to show that h2h1h
−1
2

∣
∣
m2

y→0−−→ 0. For this purpose it is not necessary to
actually compute h1. Rather, decompose h1 as

h1 = h1

∣∣
h2

+ h′
1 ⇒ h2 h1 h

−1
2

∣∣
m2

= h2 h
′
1 h

−1
2

∣∣
m2

. (7.44)

The comparison of h1 and h2 shows that h
′
1 is proportional to Pμ, and we only have

to determine the y-dependence, since

h′
1 = yωcμPμ ⇒ h2 h

′
1 h

−1
2 = O(

yω+1
)
. (7.45)

It is thus sufficient to show that for

h1 = yωcμ
(
Pμ − Kμ

) + · · · ,

we have ω = 1. In order to see this, we note that g = g+ g− with

g+ = eX ·P e�α
A QA

α+��Aα̇
�Qα̇A

, g− = eϑA
α Sα

A+�ϑα̇A �SAα̇ M(N ) yD , (7.46)

where g+ only contains generators with positive weights, while g− only contains
generators with non-positive weights. The group elements g+ can be considered as a
set of coset representatives for a superspace obtained by factoring out the subgroup
H+ with Lie algebra

h+ = span
{
Mμν, D, Kμ, Sα

A,�SAα̇

} ⊕ su(4) . (7.47)
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In particular, h+ only contains generators of non-positive weights. The Maurer–
Cartan form for the coset representative g+ can be obtained from (7.10) by setting
ϑ = 0, N constant and y = 1. We compare the variation of g with the variation of
g+, for which we note g−1

+ tg+ = g−1
+ δg+ + h+, where h+ ∈ h+. For the variation of

g, we thus have

δZM UM = g−1 δg = g−1
−

(
g−1

+ δg+ + h+
)
g− − h1 (7.48)

In the above formula h1 compensates for those terms of g−1
−

(
g−1

+ δg+ + h+
)
g− which

may not be put into the form δZM UM . In particular, there is no need to compensate
a term proportional to Pμ as these terms are the same in g−1 δg and g−1−

(
g−1+ δg+

)
g−,

which may be seen easily from the calculation of the Maurer–Cartan form shown in
Sect. 7.1. It is thus clear that the term in h1 proportional to (Pμ − Kμ) compensates
for a term in g−1

−
(
g−1

+ δg+ + h+
)
g−, which is proportional to Kμ. This term, however,

is of orderO(y), since Kμ has weight −1 and we are doing the conjugation with yD

last. We thus see that

h1 = y cμ
(
Pμ − Kμ

) + · · · ,

as we have claimed above.
This shows that the space parametrized by (7.41) may indeed be viewed as the

superconformal boundary of the space PSU(2, 2|4)/ (SO(4, 1) × SO(5)). Corre-
spondingly, we impose the following set of boundary conditions on the minimal
surface that describes the superspace Wilson loop at strong coupling:

Xμ(τ = 0,σ) = xμ(σ) , y(0,σ) = 0 , N I (0,σ) = nI (σ) ,

�α
A(0,σ) = θα

A(σ) , ��Aα̇(0,σ) =�θAα̇(σ) .

(7.49)

7.3 The Bulk Expansion

Wehave seen inChap.4 that in order to derive the symmetries of theminimal surfaces
from the classical integrability of the underlying model, we have to determine the
first few coefficients of the expansion of the minimal surface around the boundary.
As before, we will fix them from the equations of motion, the Virasoro constraints
and the functional derivatives of the area of the minimal surfaces.

For the superstring however, half of the fermionic components decouple from the
equations of motion and we only get a unique solution by fixing a kappa symmetry
gauge. In our case, it is convenient to set half of the coefficients of the fermionic part
of U = g−1dg to zero. Concretely, we fix the conditions
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εα
2 = εα

4 = 0 , �ε2α̇ = �ε4α̇ = 0 , χ α
1 = χ α

3 = 0 , �χα̇1 = �χα̇3 = 0 . (7.50)

Written out for the supermatrix A(1)+(3), the above gauge condition takes the form

A(1)+(3) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 0 0 • 0 • 0
0 0 0 0 • 0 • 0
0 0 0 0 0 • 0 •
0 0 0 0 0 • 0 •
0 0 • • 0 0 0 0
• • 0 0 0 0 0 0
0 0 • • 0 0 0 0
• • 0 0 0 0 0 0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (7.51)

It is typically difficult to verify that a certain kappa symmetry gauge can be
reached by kappa symmetry transformations, since the transformation involves a
solutionof the equations ofmotion anddue to the complications arising inmultiplying
two exponentials. In order to check whether it is at least plausible that the above
kappa symmetry gauge can be reached, we consider the simple case of a straight-line
boundary curve and work to linear order in Graßmann variables.

We recall that the kappa symmetry transformations are given by

g �→ g · expκ , U �→ U + dκ + [U,κ] , (7.52)

where we have left out the gauge transformations that ensure staying within the given
class of coset representatives. The kappa symmetry parameter κ = κ(1)+(3) is given
by Eq. (6.12),

κ(1) = A(2)
i,− K(1),i

+ + K(1),i
+ A(2)

i,− , κ(3) = A(2)
i,+ K(3),i

− + K(3),i
− A(2)

i,+ , (7.53)

where we have used the projections V i± = Pi j
± Vj = 1

2

(
γi j ± i εi j

)
Vj . In conformal

gauge, we can write this more conveniently as

κ = κ(1)+(3) = i
{
A(2)

σ ,K(1)+(3)
} + {

A(2)
τ ,K(1)−(3)

}
. (7.54)

Here,K is again a generic odd supermatrix. For the straight-line boundary curve, we
have the boundary conditions

X (0,σ) = (0, 0, 0,σ) , y(0,σ) = 0 , N I (0,σ) = nI , (7.55)

where nI is constant. Since we are working up to linear order in Graßmann variables,
the fermionic parts of the minimal surface solution will not be relevant for us. For
the bosonic part, we note that the equations of motion are solved by

X (τ ,σ) = (0, 0, 0,σ) , y(τ ,σ) = τ , (7.56)
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and correspondingly, we obtain

A(2)
σ = − Ẋαα̇

4τ

(
P α̇α + K α̇α

)
, A(2)

τ = 1

τ
D . (7.57)

We can then calculate the kappa symmetry parameter κ from Eq. (7.54). We
parametrize the supermatrix K as

K = aα
AQA

α −�aAα̇
�Qα̇A + bA

αSα
A − �bα̇A�SAα̇ . (7.58)

This signs above are chosen in such away that demandingaα
A = (�aAα̇)∗ and similarly

for b would ensure κ ∈ su(2, 2|4) on a worldsheet with Minkowskian signature. In
the Euclidean case, the reality constraint cannot be realized. The anti-commutators of
supermatrices appearing in (7.54) can be related to commutators due to the particular
form of the supermatrix generators given in Appendix A.2. We have the following
identities for P ∈ {

Pμ, Kμ, D
}
:

{P , Q} = [P , Q] , {P , S} = − [P , S] ,
{P , �S} = [P , �S ]

,
{P , �Q} = − [P , �Q ]

.

For the parameter κ, we then find

κ = 1

2τ

[ (
i ẋαα̇

�bα̇A + K AB bBα

)
QA

α + (−ibA
α ẋαα̇ − KAB �bα̇

B
) �Qα̇A

+ (
i�aAα̇ ẋ α̇α + KAB a

αB
)
Sα

A + (−i ẋ α̇α aα
A − K AB �aα̇

B
)�SAα̇

]

= cα
AQA

α −�cAα̇
�Qα̇A + dA

αSα
A − �d α̇A�SAα̇ . (7.59)

The parameters c,�c, d, �d are related among each other by

c̄Aα̇ = i εα̇β̇ ẋ
β̇α̇ cα

B KBA , d̄ α̇A = −i K AB dB
α ẋαβ̇ εβ̇α̇ . (7.60)

This means that fixing c1 and c̄1 determines c2 and c̄2, fixing c3 and c̄3 determines
c4 and c̄4 and likewise for d, d̄ . In particular, we observe that the kappa symmetry
transformation has half the degrees of freedom of a generic fermionic element, as
expected for this supercoset. Moreover, we observe that we cannot enforce κ ∈
su(2, 2|4) by constraining K. One may e.g. enforce (cα

1)∗ = c̄1α̇ but that leads to
(cα

2)∗ = −c̄2α̇. We go on to calculate the fermionic part of the transformedMaurer–
Cartan form U ′ from the relation

A′(1)+(3) = A(1)+(3) + dκ + [
A(0)+(2) , κ

]
, (7.61)
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noting that

A(0)+(2)
τ = 1

τ
D , A(0)+(2)

σ = − ẋαα̇

2τ
Pαα̇ . (7.62)

Then we find the following transformations for the parameters ε and χ:

χ′
τ A

α = χτ A
α + (

∂τ + 1
2τ

)
dA

α , �χ′
τ
α̇A = χ̄τ

α̇A + (
∂τ + 1

2τ

) �d α̇A ,

χ′
σ A

α = χσ A
α + ∂σ dA

α , χ̄′
σ

α̇A = χ̄σ
α̇A + ∂σ d̄

α̇A , (7.63)

ε′
τ α

A = ετ α
A + (

∂τ − 1
2τ

)
cα

A , ε̄′
τ Aα̇ = ε̄τ Aα̇ + (

∂τ − 1
2τ

)
c̄Aα̇ ,

ε′
σα

A = εσα
A + ∂σ cα

A + i
2τ ẋαα̇ d̄

α̇A , ε̄′
σ Aα̇ = ε̄σ Aα̇ + ∂σ c̄Aα̇ − i

2τ dA
α ẋαα̇ .

Due to the form of the relations between the parameters c, c̄, d, d̄ explained above,
it is thus clear that we can indeed reach the kappa symmetry gauge (7.50),

εα
2 = εα

4 = 0 , ε̄2α̇ = ε̄4α̇ = 0 , χα
1 = χα

3 = 0 , χ̄1α̇ = χ̄3α̇ = 0 .

(7.64)

While we have motivated that the above kappa symmetry gauge can be reached, we
have seen that the fermionic coefficients, which are not set zero, no longer obey the
reality constraint (εα

A)∗ = ε̄Aα̇. This finding is related to working with the Wick
rotated superstring action for a Euclidean worldsheet, which implies the appearance
of a factor i in the kappa symmetry variations. This subtlety does, however, not affect
our further calculation, for which the reality constraint is irrelevant.

7.3.1 Equations of Motion

We begin by studying the equations of motion (6.16). We recall that in conformal
gauge they are given by

δi j
(
∂i A

(2)
j +

[
A(0)
i , A(2)

j

])
− i

2 εi j
[
A(1)−(3)
i , A(1)+(3)

j

]
= α(τ ,σ)C , (7.65)

δi j
[
A(2)
i , A(1)+(3)

j

]
+ i εi j

[
A(2)
i , A(1)−(3)

j

]
= 0 . (7.66)

Since the Maurer–Cartan form is of order O(τ−1) when approaching y = 0, the
equations of motion begin at the orderO(τ−2) and we consider them up to the next-
to-leading order O(τ−1). For this order, not all components of the Maurer–Cartan
form (7.10) are relevant. The R-symmetry components, for example, only appear in
the order O(τ 0) of the bosonic equations of motion and we can hence neglect them
here. This is plausible since we did not need to consider the equations of motion



172 7 Minimal Surfaces in Superspace

in the discussion of the minimal surfaces in S5 in Sect. 4.5. The relevant compo-
nents of the Maurer–Cartan form for our discussion of the equations of motion are
given by

A(0) = − rαα̇

4y

(
P α̇α − K α̇α

)
+ λ

β
α M α

β +�λβ̇
α̇

�M α̇
β̇

,

A(2) = − rαα̇

4y

(
P α̇α + K α̇α

)
+ σ

y
D ,

A(1)+(3) = 1√
y

(
εα

A QA
α +�εAα̇ �Qα̇A + y

(
χA

α Sα
A + �χα̇A �SAα̇

))
,

A(1)−(3) = i√
y

(
εα

A KAB SαB −�εAα̇ K AB �S α̇
B + y

(
χA

α K AB QBα − �χAα̇ KAB �QB
α̇

) )
.

Here, we have also left out the C-part of the projection A(2), since the C-part of the
equations of motion provides no additional information. We recall the coefficients

ζα
A = i rαα̇

�ϑα̇A , εα
A = [(d� + ζ)m]α

A , λ β
α = −i [(2d� + ζ) ϑ] β

α ,

�ζAα̇ = −i ϑA
α rαα̇ , �εAα̇ = [

m−1
(
d�� + �ζ )]

Aα̇
, �λβ̇

α̇ = i
[�ϑ (

2d�� + ζ̄
)]β̇

α̇
,

as well as

rαα̇ = dXαα̇ + 2i
(
d� �� − � d��)

αα̇ ,

σ = dy + 2y tr
(
d�� �ϑ + ϑ d�

)
,

χA
α = [

m−1 [(
4ϑ

(
d� + 1

3ζ
) − 2

(
d�� + 1

3 ζ̄
) �ϑ)

ϑ + dϑ
]]

A
α ,

�χα̇A = [[
d�ϑ + �ϑ (

4
(
d�� + 1

3 ζ̄
) �ϑ − 2ϑ

(
d� + 1

3ζ
))]

m
]α̇A

.

We begin by considering the leading orderO(τ−2) of the bosonic equation (7.65),
from which we find that

(
(∂τ y) rτ μ (Pμ + K μ) + (

(∂τ y)
2 − r2τ − r2σ

)
D

)
(0) = 0 ,

⇒ rμ
τ (0) = 0 , (y(1))

2 = (
rσ (0)

)2
.

Here, we are using the notation introduced in Eq. (4.5) for the coefficients of the
τ -expansion. We identify the leading term of rσ with the supermomentum

πμ = rμ
σ (0) = ẋμ + i tr

( �̇θσμθ − �θσμθ̇
)

(7.67)

of a superparticle moving along the boundary curve. As y should be positive and
the boundary curve space-like we note that y(1) = √

π2 = |π|. We now restrict the
parametrization of the curve to satisfy

|π| = 1 ⇒ π · π̇ = 0 ⇒ π̇2 + π · π̈ = 0 . (7.68)



7.3 The Bulk Expansion 173

This is the super analogue of the arc-length condition we employed in Sect. (4.4).
Considering the fermionic equations (7.66) at leading order in τ leads to the following
set of equations:

ετ (0)α
A + iπαα̇ ε̄τ (0)B

α̇K BA = 0 (7.69)

ε̄τ (0) Aα̇ + i ετ (0)
αB παα̇ KBA = 0 (7.70)

i ε̄σ (0)Aα̇ πα̇α + εσ (0)
αB KBA = 0 (7.71)

i πα̇αεσ (0)α
A + ε̄σ (0)B

α̇ K BA = 0 (7.72)

The Eqs. (7.69) and (7.70) as well as (7.71) and (7.72) are equivalent to each other as
one would expect as they stem from the coefficients of Q and �Q or S and�S in (7.66).
Moreover, the real and imaginary parts of these equations are equivalent. Inserting
for example (7.69) into (7.70), we obtain

ε̄τ (0) Aα̇ = κ̃2 ε̄τ (0)C β̇ πβ̇α παα̇ KCBKBA = κ̃2ε̄τ (0) Aα̇ (7.73)

Here, we have left the parameter κ̃ introduced in the string action (6.5) open in order
to show that the equations are less constraining for κ̃2 = 1 when one has kappa
symmetry. In this case, a unique solution is only found due to the gauge-fixing
condition (7.50) for the kappa symmetry. Consider for example Eq. (7.69). Due to
the kappa symmetry gauge (7.50) either ετ (0)α

A or ε̄τ (0)B
α̇K BA are vanishing for

any given value of A. Proceeding in the same way for Eq. (7.71) we conclude that

ετ (0) = εσ (0) = 0 , �ετ (0) = �εσ (0) = 0 . (7.74)

Note in particular that we do not employ reality conditions such as ε̄Aα̇ = (
εα

A
)∗

as
they becomeproblematic for theWick rotated superstring action.Given that rτ (0) = 0
and hence ζτ (0) = 0, we conclude that

�(1) = 0 , ��(1) = 0 , X(1) = 0 . (7.75)

Setting εσ (0) = 0 = ε̄σ (0) enforces that

ϑ(0)A
α = i �̇θAα̇ πα̇α , �ϑ(0)

α̇A = −i πα̇α θ̇α
A . (7.76)

It is thus indeed inconsistent to specify boundary conditions for the ϑ variables, as
we have claimed before based on the order of the fermionic part of the equations of
motion.

We now turn to the next-to leading order in the bosonic equation (7.65). Due to our
above finding, we have A(1)±(3) = O(τ 1/2) and we can hence neglect the fermionic
contributions also at the next-to leading order. Moreover, we note the following
identities for the coefficients of the Cartan form:
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σi = ∂i y + O(τ 2) , λτ α
β = O(τ ) , λσ α

α − λ̄σ
α̇

α̇ = O(τ ) . (7.77)

Evaluating (7.65) then leads to the following equations:

0 = δi j
(
(∂i y)

(
∂ j y

) − y ∂i∂ j y − ri · r j
)
(1) , (7.78)

0 = δi j
(
2 ∂i y r j αα̇ − y ∂i r j αα̇ + 2iy λ

β
i α r j βα̇ − 2iy r j αβ̇ λ̄

β̇
i α̇

)

(1)
. (7.79)

Making use of the relations (7.75) and (7.76), we find that

r2τ = O(τ 2) , r2σ = π2 + O(τ 2) , δi j
(
2iy λ

β
i α r j βα̇ − 2iy r j αβ̇ λ̄

β̇
i α̇

)
= O(τ 2) ,

and we may thus conclude that

y(2) = 0 , rμ
τ (1) = π̇μ ⇒ Xμ

(2) = π̇μ + i tr
(��(2)σ

μθ − �θσμ�(2)
)
. (7.80)

Last, we consider the next-to leading order in the fermionic equation (7.66). We
find the following conditions, this time leaving out equivalent conditions:

�χτ (0)
Aα̇ − i πα̇αεσ (1)α

A − (�εσ (1)B
α̇ − i πα̇αχτ (0)Bα

)
K BA = 0 , (7.81)

�ετ (1)Aα̇ − i χσ (0)A
α παα̇ − (�χσ (0)α̇

B − i ετ (1)
αB παα̇

)
KBA = 0 . (7.82)

Due to the kappa symmetry gauge (7.50), we can decompose these equations into
the conditions

�χτ (0)
Aα̇ + K AB �εσ (1)B

α̇ = 0 , εσ (1)α
A + K AB χτ (0)Bα = 0 , (7.83)

�ετ (1)Aα̇ + KAB �χσ (0)α̇
B = 0 , χσ (0)A

α + KAB ετ (1)
αB = 0 . (7.84)

The latter conditions allow to solve for �(2) and ��(2),

�(2)α
A = −π̇αα̇ πα̇β θ̇β

A + �K ′ AB
(
4

(�̇θπθ̇
)
B
C − i δCB ∂σ

) (
παβ̇

�̇θC β̇
)

��(2) Aα̇ = −�̇θAβ̇ πβ̇α π̇αα̇ − K ′
AB

(
4

(�̇θπθ̇
)
C
B + i δB

C ∂σ

) (
θ̇βC πβα̇

) (7.85)

Here, the matrices �K ′AB and K ′
AB are given by

K ′
AB = uA

C uB
D KCD = (

uKuT
)
AB , �K ′AB = ( (

u−1
)T

Ku−1
)AB

(7.86)

Due to Eqs. (4.113) and (7.17), this can be rewritten as

K ′
AB = (

n51 + n6γ5 + inrγr
)
A
C KCB ,

�K ′AB = K AC
(
n51 − n6γ5 − inrγr

)
C

B .
(7.87)
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From Eq. (7.83) we find the following condition for ϑ(1):

ϑ(1) Aα = i K ′
AB παα̇

�ϑ(1)
α̇B , �ϑ(1)

α̇A = −i �K ′AB πα̇α ϑ(1) Bα . (7.88)

The above results are lengthy and it can be cumbersome to use them in the calculations
that follow. For many purposes however, it suffices to note that they can be written
in the form

A(1)−(3)
τ = −i A(1)+(3)

σ + O(τ 3/2) , A(1)−(3)
σ = i A(1)+(3)

τ + O(τ 3/2) . (7.89)

7.3.2 Virasoro Constraints

The coefficient y(3) can be determined from theVirasoro constraints (6.6), specifically
from the condition

str
(
A(2)

τ A(2)
τ

) − str
(
A(2)

σ A(2)
σ

) = 0 . (7.90)

We recall that A(2) is given by (7.14),

A(2)
i = rμ

i + y2 κ
μ
i

2y

(
Pμ + Kμ

) + σi

y
D + γi C + (

� B
i A RA

B + M−1∂i M
)(2)

.

The relation required to determine y(3) appears at the order O(τ 0), such that the
R-symmetry terms are important. From Sect. 4.5, we recall that

〈
P (2)

(
M−1∂i M

)
, P (2)

(
M−1∂ j M

)〉 = ∂i N
I ∂ j N

I ,

and noting that �τ = O(τ ), we find

str
(
A(2)

τ A(2)
τ

) = 1

y2
(
r2τ + σ2

τ

) + N 2
(1) + O(τ ) . (7.91)

The other term is more involved since �σ (0) does not vanish,

� B
σA = i

(
u−1�̇θ π θ̇ u

)
A
B + O(τ ) = i

(
u−1�σu

)
A
B + O(τ ) . (7.92)

Making use of the trace identity (B.17) and the results obtained in Sect. 4.5, we find

str
(
� B

σA RA
B � D

σC P (2)
(
RC

D

) ) = � B
σA � D

σC

(
4KDBK

AC − 4δA
D δCB + 2δA

B δCD
)

= −4 �K ′AC K ′
DB

(�̇θ π θ̇
)
A
B
(�̇θ π θ̇

)
C
D + 4 tr

(�̇θ πθ̇�̇θ πθ̇
) − 2 tr

(�̇θ πθ̇
)2

= −4 tr
(�K ′ �s K

′�T
s

) + 4 tr
(�̇θ πθ̇�̇θ πθ̇

) − 2 tr
(�̇θ πθ̇

)2
, (7.93)
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as well as

str
(
� B

σA RA
B P (2)

(
M−1∂σM

) ) = 4� B
σA

(
aσ S5

) A

B

= −4i n I ṅ J tr
(
θ̇γ I J�̇θ π

)
. (7.94)

Combining these findings, we have

str
(
A(2)

σ A(2)
σ

) = r2σ
y2

+ 2 π · κs (0) + ṅ2 + 4 tr
(�̇θ πθ̇�̇θ πθ̇

) − 2 tr
(�̇θ πθ̇

)2

− 4 tr
(�K ′ �σK

′�T
σ

) − 4i n I ṅ J tr
(
θ̇γ I J�̇θ π

) + O(τ ) . (7.95)

Due to the results obtained in the last section,we can express all coefficients appearing
above in terms of the boundary data,

r2σ = 1 − τ 2
(
π̇2 − 2i tr

(��(2)πθ̇ − �̇θπ�(2)
)) + O(τ 3) ,

r2τ = τ 2π̇2 + O(τ 3) ,

σ2
τ = 1 + τ 2

(
2y(3) − 4i tr

(��(2)πθ̇ − �̇θπ�(2)
)) + O(τ 3) ,

π · κσ (0) = 6 tr
(�̇θ πθ̇�̇θ πθ̇

) − i tr
(�̇θπθ̈ − �̈θπθ̇

) + O(τ ) .

(7.96)

Inserting these results into the Virasoro constraint (7.90) allows to solve for y(3),

y(3) = −π̇2 + 3i tr
(��(2)πθ̇ − �̇θπ�(2)

) + 8 tr
(�̇θ πθ̇�̇θ πθ̇

) − i tr
(�̇θπθ̈ − �̈θπθ̇

)

− tr
(�̇θ πθ̇

)2 − 2 tr
(�K ′ �σK

′�T
σ

) − 2i n I ṅ J tr
(
θ̇γ I J�̇θ π

) + 1
2

(
ṅ2 − N 2

(1)

)
.

(7.97)

7.3.3 Variation of the Minimal Area

The solutions of the first few orders of the equations of motion allow to extract the
divergence of the minimal area. Using that

r2σ = π2 + O(τ 2) , r2τ = O(τ 2) , y = |π|τ + O(τ 2) ,

σ2
τ = π2 + O(τ 2) , σ2

σ = O(τ 2) ,

we find the regulated area of the minimal surface in superspace to be given by

Amin(γ)
∣∣
y�ε

= 1

2

2π∫

0

dσ

c∫

τ0(σ)

dτ
(
str

(
A(2)

τ A(2)
τ

) + str
(
A(2)

σ A(2)
σ

))
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=
2π∫

0

dσ

c∫

τ0(σ)

dτ

(
1

τ 2
+ O(τ 0)

)
= L(γ)

ε
+ (finite) . (7.98)

Here, we have defined τ0(σ) as before by y(τ0(σ),σ) = ε and introduced the length
of the curve γ in superspace,

L(γ) =
∫

dσ |π(σ)| . (7.99)

If we then define the renormalized area as before to be given by

Aren(γ) = lim
ε→0

{
Amin(γ)

∣∣
y�ε

− L(γ)

ε

}
, (7.100)

the arguments given in Sect. 4.1 can be applied to infer that the invariance of the
area functional under PSU(2, 2|4)-transformations carries over to the renormalized
minimal area.

With the renormalization prescription established, we turn to the discussion of the
variational derivatives of the area. As before, they are related to the third-order coef-
ficients of X and �. Using that the parametrization of the minimal surface satisfies
the equations of motion, the variation only contains boundary terms and we have

δAmin(γ)
∣∣
y�ε

=
b∫

a

dσ

c∫

τ0(σ)

dτ
{
∂τ str

(
g−1δg �τ

) + ∂σ str
(
g−1δg �σ

)}
, (7.101)

with � given by Eq. (6.14),

�i = δi j A(2)
j − i

2 εi j A(1)−(3)
j .

Since the expression g−1δg does not contain any derivatives which may be restricted
by choosing a special parametrization, we can safely demand that the parametrization
satisfy |π| = 1. Moreover, due to the kappa symmetry invariance of the action, we
can restrict ourselves to the kappa symmetry gauge (7.50). This allows us to apply
the results derived so far, in particular we have τ0(σ) = ε + O(ε3). Thus, using the
periodicity of the parametrization in σ, we find that

δAmin(γ)
∣∣
y�ε

= −
L∫

0

dσ str
(
g−1δg �τ

)
(τ0(σ),σ) + O(ε) . (7.102)

To compute the above result explicitly, we use the expression (7.10) for g−1δg and
in particular that
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δX (τ ,σ) = δx(σ) + O(τ 2) , δ�(τ ,σ) = δθ(σ) + O(τ 2) , (7.103)

since the first-order coefficients of X and � vanish identically. Applying the trace-
identities given in Appendix A.2, we find

δAmin(γ)
∣∣
y�ε

= δL(γ)

ε
+ (finite) , (7.104)

and the finite term is given by

δAren(γ) =
L∫

0

dσ
{
δxμ b

μ + δθα
A
(
4ξA

α − i �θAα̇ b
α̇α

)

+ δ�θAα̇

(
4ξ̄α̇A − i bα̇α θα

A
) − δnI N I

(1)

}
(7.105)

Here, we defined

bμ = − 1
2r

μ
τ (2) − κ

μ
τ (0) + 2i tr

((�ϑ(0)ϑ(1) − �ϑ(1)ϑ(0) + 2 nI N J
(1)

�ϑ(0)γ
I Jϑ(0)

)
σ̄μ

)
,

ξA
α = ϑ(1)A

α + nI N J
(1)

(
γ I Jϑ(0)

)
A

α , (7.106)

ξ̄α̇A = −�ϑα̇A
(1) + nI N J

(1)

(�ϑ(0)γ
I J

)α̇A
.

We read off the functional derivatives of the regulated minimal area from (7.105):

bμ(σ) = δAren(γ)

δxμ(σ)
,

N I
(1)(σ) = −δAren(γ)

δnI (σ)
+

(
nJ (σ)

δAren(γ)

δnJ (σ)

)
nI (σ) ,

ξA
α(σ) = 1

4

(
δAren(γ)

δθα
A(σ)

+ i �θAα̇(σ)σα̇α
μ

δAren(γ)

δxμ(σ)

)
,

ξ̄α̇A(σ) = 1

4

(
δAren(γ)

δ�θAα̇(σ)
+ i σα̇α

μ θα
A(σ)

δAren(γ)

δxμ(σ)

)
.

(7.107)

The relations between the functional derivatives of the minimal area and the coordi-
nates X(3), �(3) and ϑ(1) take a much more complicated form than for the minimal
surface in AdS5. The important point for us, however, is to identify the above coeffi-
cients in the Noether current j , where they appear naturally. In order to do this, we do
not need to find expressions for X(3), �(3) and ϑ(1) in terms of the above functional
derivatives and hence we have made no attempt to derive such relations above.
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7.4 Yangian Symmetry

With the expansion of the minimal surface around a generic smooth boundary curve
established, we turn to the evaluation of the conserved charges in order to derive the
Yangian symmetry of the superspace Wilson loop at strong coupling.

7.4.1 Level Zero

We begin by discussing the G-symmetry charge Q(0), which encodes the supercon-
formal invariance of the area of the minimal surface. The invariance under large
superconformal transformations was already established by generalizing the argu-
ment given in Sect. 4.1. The derivation presented below provides an explicit repre-
sentation of the superconformal generators in the boundary superspace and serves
as a preparation for our discussion of the Yangian invariance.

We are thus interested in the τ 0-component of the Noether current j = −2g�g−1.
Making use of relation (7.89), we have

jτ (0) = −2
{
g�τ g

−1}
(0) = −2

{
g

(
A(2)

τ − i
2 A

(1)−(3)
σ

)
g−1}

(0)

= −2
{
g

(
A(2)

τ + 1
2 A

(1)+(3)
τ

)
g−1

}
(0) . (7.108)

For the last step, notice that the terms within the brackets agree up to terms of order
O(τ 3/2) and the conjugation with g lowers the order of a fermionic term at most by√

τ . The difference is hence not relevant for the τ 0-component. The conjugations can
be done in the same way as in the calculation of the Maurer–Cartan form explained
in Sect. 7.1, and we arrive at

jτ (0) =
{
1
τ
eX ·P+�

(−π̇μ Kμ − 2D − (
ϑ(0)A

α Sα
A + �ϑα̇A

(0)
�SAα̇

))
e−X ·P−�

}

(0)

+ 2
{
eX ·P+�

(
1
2b

μ Kμ − ξA
α Sα

A + �ξα̇A �SAα̇ + nI N J
(1) � I J

)
e−X ·P−�

}

(0)
.

The first term above vanishes, since the expansions of the coordinates X and � are
of the form X = x + O(τ 2) and � = θ + O(τ 2) and it remains to compute

jτ (0) =2 ex ·P+θQ+�θ �Q(
1
2b

μ Kμ − ξA
α Sα

A + �ξα̇A �SAα̇ + nI N J
(1) � I J

)
e−x ·P−θQ−�θ �Q .

The coefficients b, ξ and N(1) defined in (7.106) is exactly those that were identified
with the functional derivatives of the minimal area in the last section. We can thus
write the resulting expression in the form

jτ (0)(σ) = 2 ja(σ) (Aren(γ)) T a . (7.109)
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Here, T a = Gab Tb span the dual basis to the generators defined in Appendix A.2.
Note that we use the inverse of the metric Gab on u(2, 2|4) to raise and lower the
group indices. The densities ja(σ) denote functional derivative operators, which act
on the minimal area Aren(γ) above. Their form can be read off from the relation

ja(σ) (Aren(γ)) = 1
2 str

(
jτ (0)(σ) Ta

)
. (7.110)

The functional derivative operators ja(σ) are given explicitly in Appendix A.5. We
note that the superspace representation obtained in this way also includes the gener-
ator

b(σ) = 1

2

(
θ A
a (σ)

δ

δθ A
a (σ)

− �θAα̇(σ)
δ

δ�θAα̇(σ)

)
, (7.111)

which does not give rise to a symmetry of theminimal area, since it corresponds to the
C-part of Q(0), which is not conserved. Moreover, we also read off the central charge
generator c(σ) = 0 from the B-part of the conserved charge, which vanishes since
the model is constructed on SU(2, 2|4). The algebra of the generators is compatible
with setting c(σ) = 0 and is given by

[
ja(σ), jb(σ

′)
} = f c

ab jc(σ) δ(σ − σ′) . (7.112)

Again, the structure constants f c
ab are related to the structure constants f c

ab of the
supermatrices Ta by

f c
ab = f c

ba = − (−1)|a||b| f c
ab . (7.113)

We have thus seen that the vanishing of the level-0 charge Q(0) can be rewritten as
the invariance of the superspace Wilson loop under the level-0 Yangian generators

J(0)a =
∫

dσ ja(σ) . (7.114)

7.4.2 Level One

The level-1 Yangian generators follow from evaluating the level-1 Yangian charge

Q(1) = 1

2

∫
dσ1 dσ2 ε21 [ jτ (σ1), jτ (σ2)] − 4

∫
dσ

(
a(2)

σ + 1
4a

(1)+(3)
σ

)
. (7.115)

Here, we have employed the abbreviation a(k) = gA(k)g−1 introduced in Eq. (6.42)
and we recall that ε21 denotes
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ε(σ2 − σ1) = θ(σ2 − σ1) − θ(σ2 − σ1) . (7.116)

Again, we are only interested in the τ 0-component and note that its calculation can
be simplified by using that the τ -component of the Noether current can be written in
the form given in (4.86),

jτ = 1

τ
∂σ jσ (−2) + jτ (0) − τ ∂σ jσ(0) + O(τ 2) , (7.117)

due to current conservation. The τ 0-component is hence given by

Q(1)
(0) = 1

2

∫
dσ1 dσ2 ε21

[
jτ (0)(σ1), jτ (0)(σ2)

]

−
∫

dσ
(
4a(2)

σ (0) + a(1)+(3)
σ (0) + [ jσ, ∂σ jσ](−2)

) = Q(1)
bi−lo + Q(1)

lo . (7.118)

Let us first evaluate the bi-local part. Using the expression (7.109) derived for jτ (0)

above, we find

Q(1)
bi−lo = 2 f bca

∫
dσ1 dσ2 ε21 jb(σ1) (Aren(γ)) jc(σ2) (Aren(γ)) T a

= 2 fcba

∫
dσ1 dσ2 ε21 jb(σ1) (Aren(γ)) jc(σ2) (Aren(γ)) T a . (7.119)

In the last step, we have switched to the structure constants f c
ab of the functional

derivative operators. The index raising and lowering is then done via the metric
Gab obtained for these generators. In Appendix A.5, we find that it is related to the
components of the metric for the corresponding supermatrices by

Gab = Gba = (−1)|a|Gab . (7.120)

Correspondingly, we have

f bca = Gbd Gce f g
de Gga = (−1)|b|+|c|+|a| Gbd Gcef g

ed Gga

= (−1)|b|+|c|+|a| fbca = fbca .

Here, we have used that (|b| + |c| + |a|) ∈ {0, 2} for non-vanishing fbca due to the
Z2 grading of the Lie super algebra. The bi-local part found above thus shows the
typical structure of a level-1 Yangian generator, as expected.

It remains to compute the local term, for which we note the expression

Q(1)
lo = −4

∫
dσ

{
g

(
A(2)

σ + 1
4 A

(1)+(3)
σ + τ 2 [�σ, ∂σ�σ + [Uσ,�σ]]) g−1

}
(0) .

(7.121)
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While we have pulled out the conjugations with g in order to make use of the can-
cellations between the two terms at an earlier stage of the calculation, it turns out to
be convenient to already discuss the conjugations with MyD when considering these
terms individually, in particular because after the conjugation with yD the orders in
τ will not get lowered and we may already discard terms that are of order O(τ ).
We recall the expressions found for the components of the Maurer–Cartan form in
Sect. 7.1,

A(2) = −rαα̇ + y2 καα̇

4y

(
P α̇α + K α̇α

)
+ σ

y
D + γ C +

(
� B

A RA
B + M−1dM

)(2)
,

A(1)+(3) = 1√
y

(
εα

A QA
α +�εAα̇ �Qα̇A + y

(
χA

α Sα
A + �χα̇A �SAα̇

))
,

as well as the coefficients

σ = dy + 2y tr
(
d�� �ϑ + ϑ d�

)
,

γ = tr
(
ϑ (2d� + ζ) − (

2d�� + �ζ) �ϑ)
, (7.122)

�A
B = [

m−1
(
ϑ

(
d� + 1

2ζ
) − (

d�� + 1
2 ζ̄

) �ϑ)
m

]
A

B .

Inserting the solutions (7.76) for the components ϑ(0) and �ϑ(0), we find

σσ = 2y tr
( �̇θ �ϑ(0) + ϑ(0)θ

) + O(τ 2) = 2i τ tr
(�̇θπθ̇ − �̇θπθ̇

) + O(τ 2) = O(τ 2) ,

γσ = 2i tr
(�̇θπθ̇

) + O(τ ) . (7.123)

We note moreover that in the above expression for A(2), the projections are left
implicit for the R-symmetry part. The part stemming from the M−1dM-term can be
inferred from the result (4.117) for the Noether current in the coset description of S5

discussed in Sect. 4.5. For the other term, we make use of the explicit form of the
projections given in Appendix A.2 and note that

�σ A
B P (2)

(
RA

B

) = 1
4

(
�σ A

B − K BC�σC
DKDA

)
RA

B . (7.124)

Using that εσ(0) = 0, we thus find

MyD
(
A(2)

σ + 1
4 A

(1)+(3)
σ

)
y−DM−1 = − rσ αα̇ + y2κσ αα̇

4y2

(
K α̇α + y2P α̇α

)
− 1

4 ρA
B RA

B

+ 2i tr
(�̇θπθ̇

)
C + 1

4

(
(mχσ)A

αSα
A +

(
�χσm

−1
)α̇A �SAα̇

)
+ O(τ ) . (7.125)

Here, the coefficient of the R-symmetry part is given by

ρA
B = nI ṅ J

(
γ I J

)
A

B − i
(�̇θπθ̇

)
A
B

+ i �K ′ BC(�̇θπθ̇
)
C
DK ′

DA + i
2δ

B
A tr

(�̇θπθ̇
)
. (7.126)
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Next, we consider the commutator term in (7.121) and compute

(∗) = [
MyD

(
τ 2�σ

)
y−DM−1, MyD (∂σ�σ + [Uσ,�σ]) y

−DM−1
]
. (7.127)

In this expression we may replace �σ = A(2)
σ + i

2 A
(1)−(3)
τ = A(2)

σ + 1
2 A

(1)+(3)
σ +

O (
τ 3/2

)
as the unwanted terms are at least of order τ . Consider then the term on

the left-hand side. As we shall see shortly, the right-hand side of the commutator is
of order O(τ−2) and we can hence neglect all terms that are of order O(τ 3) in the
computation of the expression on the left-hand side. This leads to finding

MyD
(
τ 2�σ

)
y−DM−1 = − τ 2

4y2
(
rσ αα̇ + y2κσ αα̇

) (
K α̇α + y2P α̇α

) − τ 2

4
ρA

B RA
B

+ τ 2

2

(
(mχσ)A

αSα
A + (

χ̄σm
−1)α̇A �SAα̇

)
+ (negl.) .

Here, the bracket (negl.) denotes terms, which can be neglected. Note in particular
that only the term proportional to K α̇α is of orderO(τ 0), while all other terms are of
orderO(τ 2).We need thus only compute the right-hand side of the above commutator
up toO(τ−2) for the generators that commute with K α̇α and toO(τ 0) for those that
don’t. With these simplifications we have

MyD (∂σ�σ + [Uσ,�σ]) y
−DM−1 = − π̇αα̇

4τ 2

(
K α̇α + τ 2P α̇α

) + r2σ
y2

D + (negl.) ,

and note that r2σ = 1 + O(τ )2. Combining these results, we find

(∗) = −τ 2 r2σ
4y4

(
rσ αα̇ + y2κσ αα̇

) (
K α̇α − y2P α̇α

) − πμπ̇νMμν

+ 1
4

(
(mχσ)A

αSα
A + (�χσm

−1)α̇A �SAα̇

)
+ O(τ ) . (7.128)

Accordingly, we have

MyD
(
A(2)

σ + 1
4 A

(1)+(3)
σ + τ2

[
�σ, ∂σ�σ + [Uσ, �σ]

])
y−DM−1 =

= − y2 + τ2r2σ
4y4

(
r α̇α
σ + y2κα̇α

σ

)
Kαα̇ − y2 − τ2r2σ

4y2
r α̇α
σ Pαα̇ − 1

4 ρA
B RA

B − πμπ̇νMμν

+ 1
2

(
(mχσ)A

αSα
A +

(
�χσm

−1
)α̇A �SAα̇

)
+ 2i tr

(�̇θπθ̇
)
C + O(τ )

= −πα̇α

2τ2
Kαα̇ − 1

4

(
r α̇α
σ (2) + 2κα̇α

σ (0) + (
π · rσ (2) − 2y(3)

)
πα̇α

)
Kαα̇

− 1
4 ρA

B RA
B − πμπ̇νMμν + 2i tr

(�̇θπθ̇
)
C

− 1
2

(
3�̇θπθ̇�̇θπ − i ∂σ

(�̇θπ))
A

α Sα
A − 1

2

(
3πθ̇�̇θπθ̇ + i ∂σ

(
πθ̇

))α̇A �SAα̇ + O(τ ) . (7.129)
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Rather conveniently, the terms proportional to Pαα̇ have cancelled out. This simplifies
the computation of the conjugations with eη, for which we find

eηMyD
(
A(2)

σ + 1
4 A

(1)+(3)
σ + τ2

[
�σ, ∂σ�σ + [Uσ,�σ]

])
y−DM−1e−η = πμ

τ2
Kμ − πμπ̇νMμν

+ 2i tr
(�̇θπθ̇

)
C + 1

2 (N2
(1) πμ + lμ)Kμ − 1

4 f A
α Sα

A + 1
4

�f α̇A �SAα̇ − 1
4 ρA

B RA
B . (7.130)

Here, the coefficients lμ, f Aα and �f α̇A are given by (cf. Eqs. (7.85), (7.96) and
(7.126))

lμ = rμ
σ (2) + (

π · rσ (2) − 2y(3) − N 2
(1)

)
πμ − 4i tr

(�ϑ(0) ρϑ(0) �σμ
)

− 3i tr
(
θ̇�̇θ(π̇�σμπ − π�σμπ̇

))

= π̈μ + (
π̇2 − ṅ2

)
πμ −

(
2π · κσ (0) − 4i tr

((
�(2)�̇θ − θ̇��(2) + θ̇ρ�̇θ)π))

πμ

+ 4i tr
(
θ̇ρ�̇θσμ

) − 3i tr
(
θ̇�̇θ(π̇�σμπ − π�σμπ̇

))
,

f A
α = [

6 �̇θπθ̇�̇θπ − 2i �̈θ π − 4i �̇θ π̇ − 4i ρ�̇θπ]
A

α ,

f̄ α̇A = [ − 6πθ̇�̇θπθ̇ − 2i πθ̈ − 4i π̇θ̇ + 4i πθ̇ρ
]α̇A

.

We have chosen not to absorb the term involving N 2
(1) into the definition of l

μ, since
this term is the only one of the above terms that contains functional derivatives of
the minimal area. The coefficients are introduced in such a way that the remaining
conjugation with ex ·P+θQ+�θQ leads to an expression that resembles the one found for
jτ (0) in Eq. (7.112),

jτ (0) = 2 ex ·P+θQ+�θQ
(
1
2 ∂μ Kμ − 1

4

(
∂A

α + i �θAα̇ ∂α̇α
)
Sα

A

+ 1
4

(
∂α̇A + i ∂α̇α θα

A
) �SAα̇ − 1

4

(
γ I J

)
A

B nI∂ J RA
B

)
(Aren(γ))e−x ·P−θQ−�θQ

= 2 ja(σ) (Aren(γ)) T a (7.131)

= 2
(
jμa ∂μ + jaα

A ∂A
α + ja Aα̇ ∂α̇A + jaA

B
(
γ I J

)
B

A nI∂ J
)
(Aren(γ)) T a .

Here, we have used the abbreviations

∂μ = δ

δxμ(σ)
, ∂α

A = δ

δθA
α (σ)

, �∂Aα̇ = δ

δ�θAα̇(σ)
, ∂ I = δ

δnI (σ)
, (7.132)

for the functional derivatives appearing in the densities ja(σ). We can thus write a
part of the local term as

ex ·P+θQ+�θ �Q(
1
2 l

μKμ − 1
4 f A

α Sα
A + 1

4
�f α̇A �SAα̇ − 1

4 ρA
B RA

B

)
e−x ·P−θQ−�θ �Q

= (
jμa lμ + jaα

A
(
f A

α − i �θAα̇ l
α̇α

) + ja Aα̇

(
f̄ α̇A − i l α̇αθα

A
) + jaA

B ρB
A
)
T a .

(7.133)
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There is an additional term which is similar to the one which evaluated to zero in
the bosonic calculation, see Eq. (4.106). Here, it does give a contribution which we
denote by

j(1) ′
a T a =

{
eX ·P+�Q+���Q

(πμ

τ 2
Kμ − πμπ̇νMμν + 2i tr

(�̇θπθ̇
)
C

)
e−X ·P−�Q−���Q

}

(0)
.

(7.134)

Explicit expressions for the coefficients above are given inAppendixA.5. Combining
these terms with the ones discussed before, we obtain the level-one densities

j(1)a = jμa lμ + jaα
A
(
f A

α − i �θAα̇ l
α̇α

)+ ja Aα̇

(
f̄ α̇A − i l α̇αθα

A
)+ jaA

B ρB
A + j(1) ′

a .

(7.135)

The local part of the level-1 Yangian charge is thus given by

Q(1)
lo = −4

∫
dσ

{
j(1)a (σ) T a + ex ·P+θQ+�θ �Q (

1
2N

2
(1)π

μKμ

)
e−x ·P−θQ−�θ �Q

}

= −4
∫

dσ
{
j(1)a (σ) T a + (

jμa πμ − i jaα
A �θAα̇ πα̇α − i ja Aα̇ πα̇α θα

A
)

PI J ∂ I (Aren(γ)) ∂ J (Aren(γ))
}

. (7.136)

Here, we have introduced the projection PI J = δ I J − nI nJ onto the tangent space
of S5 at the point nI . The combination with the bi-local part (7.119) of Q(1) then
gives the full level-1 Yangian charge

Q(1)
a = 2 fcba

∫
dσ1 dσ2 ε21 jb(σ1) (A) jc(σ2) (A) − 4

∫
dσ j(1)a (σ) (7.137)

− 4
∫

dσ
(
jμa πμ − i jaα

A �θAα̇ πα̇α − i ja Aα̇ πα̇α θα
A
)
PI J ∂ I (A) ∂ J (A) .

The vanishing of the level-1 charge Q(1) can be rewritten as the level-1 Yangian
invariance of the Wilson loop in superspace, which is given by

〈W(γ)〉 = e−
√

λ
2π Aren(γ) (7.138)

at strong coupling. The corresponding level-1 Yangian generators are given by

J(1)a = fcba

∫
dσ1 dσ2 ε21 jb(σ1) jc(σ2) − λ

2π2

∫
dσ j(1)a (σ)

− 2
∫

dσ
(
jμa πμ − i jaα

A �θAα̇ πα̇α − i ja Aα̇ πα̇α θα
A
)
PI J δ2

δnI δnJ
. (7.139)
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Concretely, applying the above generators to the super Wilson loop gives

J(1)a 〈W(γ)〉 = 1

8π2

(
λQ(1)

a + O(√
λ
)) 〈W(γ)〉 .

In order to further discuss the generators, we consider the level-1 momentum gener-
ator P(1) μ. Explicitly, we have

P(1) μ = 2
∫

dσ1 dσ2 ε21

[(
mμν(σ1) − d(σ1)η

μν
)
pν(σ2) + i

4qA
α(σ1)�σμ

αα̇�q α̇A(σ2)
]

− 2
∫ L

0
dσ πμ PI J δ2

δnI δnJ
(7.140)

− λ

2π2

∫ L

0
dσ

{
π̈μ +

(
π̇2 − ṅ2

)
πμ + 4i tr

(
θ̇ρ�̇θσμ

) − 3i tr
(
θ̇�̇θ(π̇�σμπ − π�σμπ̇

))

− tr
(
12�̇θπθ̇�̇θπθ̇ + 2i

(
θ̈�̇θ − θ̇�̈θ)π − 4i

(
�(2)�̇θ − θ̇��(2) + θ̇ρ�̇θ)π)

πμ
}

.

The expressions for the variables �(2) and ρ can be found in Eqs. (7.85) and (7.126).
Let us compare this generator to the level-1 momentum generator of the Yangian
Y[so(2, 4)] found for the minimal surfaces in AdS5. From Eq. (4.109), we infer that
it is given by

P(1) μ
AdS =

∫
dσ1 dσ2 ε21 (mμν(σ1) − d(σ1)η

μν) pν(σ2) − λ

4π2

∫ L

0
dσ

(
ẋμ ẍ2 + ...

x μ
)

.

(7.141)

The difference in the normalization of the two generators stems from the use of a
different matrix representation1 for the conformal algebra in Chap.4 and the cor-
responding subalgebra of the superconformal algebra in the present chapter, cf.
AppendixA.2. This leads to a difference in the metric used to raise and lower the
group indices (compare Eqs. (4.28) and (B.16)), which accounts for the different
normalization.

If we set the fermionic variables zero and take nI to be constant, the full generator
will reduce to the AdS-generator above. This shows that the coefficient of the local
term of the bosonic Yangian symmetry generator constructed in Ref. [2] is not
altered by the inclusion of the fermionic degrees of freedom, which was considered
to possibly lead a matching of the coefficients of the generators obtained at weak and
strong coupling in Ref. [2]. In fact, this finding can be understood from noting that
the full superspace calculation reduces to the AdS-calculation at every step, when
the fermionic degrees of freedom are set to zero.

However, if we do not restrict nI to be constant, the local term for the generator
P(1) μ will be different from the one obtained from the AdS-calculation and contain a

1For the discussion in Chap.4, it is preferable to employ a matrix representation that can easily be
adapted to a different dimension of the space or signature of the metric. In the present discussion,
we have employed a representation that fits well for the discussion of the superconformal algebra.
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structurally new contribution involving two functional derivatives acting on the same
point of the loop. The difference between the generators arises from employing the
Virasoro constraints to determine the coefficient y(3)(σ). The Virasoro constraints
include contributions from both Anti-de Sitter space and the sphere and hence the
coefficient y(3)(σ) involves the terms N 2

(1) and ṅ2.
It is interesting to compare the level-1 momentum generator obtained here to the

one obtained for the weak coupling side in Ref. [3]. The bi-local contributions follow
from the same typical structure of a level-1 Yangian generator, but the local terms are
derived differently. Recall that the comparison of the local terms at Graßmann order
zero showed that the structure of the local terms is the same while the relative factor
between thebi-local and local contributiondiffers.Unfortunately, this structure seems
not to prevail to the full superspace result as the comparison between the generator
(7.140) and the so-called remainder function for the respective generator in Ref. [3]
shows.

In addition to the level-1 Yangian Y[psu(2, 2|4)]-generators, the level-1 recur-
rence of the hypercharge generator B(0) was observed to be a symmetry of theWilson
loop in superspace in the weak coupling analysis of Ref. [3]. We have constructed
corresponding conserved charges in all higher levels in Chap.6 and the evaluation
of the C-part of the conserved charge Q(1) leads to the bonus symmetry generator2

B(1) = 1

4

∫
dσ1 dσ2 ε21

(
qA

α(σ1) sα
A(σ2) + �q α̇A(σ1)�sAα̇(σ2)

)

+ 2i
∫

dσ tr
[
θ�θπ]

PI J δ2

δnI δnJ
(7.142)

− λ

2π2

∫
dσ

{
3 tr

[(
θ̇�θ − θ�̇θ)πθ̇�̇θπ + 2θ�θ(π̇θ̇�̇θπ − πθ̇�̇θπ̇)]

+ 2i tr
[(

θρ�̇θ − θ̇ρ�θ)π
]

− i tr
[
θ�θπ] (

ṅ2 − π̇2
)

+ 8 tr
[
θ�θε(θ̇ρ�̇θ)T ε

]

+ i tr
[
θ�θπ]

tr
[(
12θ̇�̇θπθ̇�̇θ + 2i

(
θ̇�̈θ − θ̈θ̇

) + 4i
(
�(2)�̇θ − θ̇��(2) + θ̇ρ�̇θ))π

] }
.

In the discussion in Chap. 5, we have noted that the Yangian level-1 generators over
the superconformal algebra are cyclic due to the vanishing of the dual Coxeter num-
ber, which implies that the contraction f cb

a f d
bc vanishes over psu(2, 2|4). Indeed,

this argument ensures the cyclicity of the level-1 Y[psu(2, 2|4)]-generators. For
the above level-1 hypercharge generator, we note that the respective contraction in
u(2, 2|4) leads to the finding

B(1) − B̃(1) ∝
�∫

0

dσ c(σ) . (7.143)

2The result in Ref. [4], where the strong-coupling bonus symmetry was shown, contains an error,
which has been corrected here.
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Here, the tilded generator again denotes the hypercharge generator with starting point
x(�) rather than x(0), as in the discussion of Chap.5. The cyclicity then follows from
the identical vanishing of c(σ).

We have seen in Chap.6 that the conserved charges of themodel allow for the con-
struction of the higher-level recurrences of the hypercharge generator in any higher
level of the Yangian. While deriving these generators would likely require to extend
the expansion of theminimal surface solution to higher orders in the τ -expansion, the
procedure described above for the level-1 generator should extend to these levels as
well. In contrast to the Yangian generators in Y[psu(2, 2|4)], the higher-level recur-
rences of the hypercharge generator cannot be obtained from commutators of the
lower-level generators. Each of these infinitely many generators could thus describe
an independent constraint, which the minimal surfaces or Wilson loop in superspace
would have to obey.
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Chapter 8
Conclusion and Outlook

We have studied hidden symmetries inN = 4 supersymmetric Yang–Mills theory or
the corresponding string theory in AdS5. Here, we have focused on the Maldacena–
Wilson loop or its strong-coupling description in terms ofminimal surfaces. These are
described by classical string theory and we employed the integrability of this theory
in order to construct symmetries of the Maldacena–Wilson loop at strong coupling.
One goal was to extend the results of Ref. [1] to the superspace Wilson loop and to
establish the connection to the lambda deformations described by Kruczenski and
collaborators [2, 3].

The study of the symmetries of minimal surfaces in AdS5 can be generalized
without creating additional complications to the same study in symmetric spaces and
we have discussed the symmetries of symmetric space models in detail in Chap. 3.
Here, we have in particular clarified the relation between the Yangian symmetry and
the lambda deformation,whichwas shown to generalize to themaster symmetry. This
symmetry has an important role within the symmetry structure of these models: It
acts as a raising operator on the infinite tower of conserved charges, thus generating
the spectral parameter, and can be employed to construct all symmetry variations
from the underlying global symmetry of the model. Additionally, we have calculated
the symmetry algebra of the symmetry variations as well as the classical Poisson
algebra of the conserved charges. The latter calculation closes a gap in the existing
literature by extending the result of Ref. [4] to symmetric space models.

With this foundation, we have turned to the specific case of minimal surfaces
ending in the conformal boundary of AdS5, for which we showed that the renormal-
ization of the area is compatible with the symmetries of the area functional. While
we mostly considered smooth contours, we have taken a first step toward the study
of the master symmetry for light-like polygons by constructing the master symme-
try transformation of the four-cusp solution. For generic, smooth boundary curves,
we have derived the variations arising from the master symmetry and the variations
associated to the Yangian symmetry charges. Peculiarly, we found that the invari-
ance under the first master symmetry variation is easily seen without referring to
the underlying integrability of the model. This stands in a surprising contrast to its
fundamental role in the symmetry structure of the model.
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The form of the variation suggests a natural way to extend the variation to a
coupling-dependent variation, which is (somewhat trivially) a symmetry at any value
of the coupling constant. This explains Dekel’s finding [5] that the transformation
obtained at strong coupling does not constitute a symmetry at weak coupling, which
is not related to whether or not we consider an extension into superspace in this
case. Furthermore, we have discussed several attempts to transfer the strong-coupling
Yangian symmetry to weak coupling.We noted that the key issue here is the cyclicity
of the level-one Yangian generators. Since this problem arises when we read off the
generator from the Yangian Ward identity at strong coupling, and is not present for
the Yangian-like symmetry variations, it is natural to attempt to carry over these
variations to weak coupling. A different attempt utilized the finding of Ref. [6] that
the Yangian generators can be rendered cyclic by the addition of an appropriate local
term. Unfortunately, both approaches are unsuccessful in establishing a symmetry at
weak coupling and we conclude that a bosonic Yangian symmetry of theMaldacena–
Wilson loop seems not to be present.

Thus concluding the analysis of the hidden symmetries of the Maldacena–Wilson
loop, we turned to the discussion ofWilson loops in superspace. Substantial evidence
for the Yangian invariance of their one-loop expectation value had been provided in
Ref. [1] and the Yangian invariance was indeed later established in Ref. [7]. At strong
coupling, following Ref. [8], we describe theWilson loop in superspace by imposing
boundary conditions in the conformal boundary of the superspace appearing in the
description of type IIB superstrings in AdS5 × S5. This is the natural supersymmetric
extension of the strong-coupling description of the Maldcena–Wilson loop.

The symmetries of the theory describing the minimal surface were discussed in
Chap.6. In addition to reviewing the construction of an infinite tower of conserved
charges following from the integrability of the model, we described the master sym-
metry for semisymmetric space models and showed that that the model contains an
infinite tower of bonus symmetries. These had been shown to be present in all odd
levels of the Yangian [9]. Here, we have seen that they can indeed be found in all
levels except the level zero, which contains the underlying global symmetry.

The Yangian symmetry of the superspace Wilson loop at strong coupling fol-
lowed from extending the analysis of Ref. [1] to the full superspace appearing in the
description of type IIB superstring theory in AdS5 × S5. We constructed the expan-
sion of the minimal surface around the boundary curve and derived the level-one
Yangian as well as the level-one bonus symmetry generator from the evaluation of
the corresponding conserved charges. Together with the weak-coupling analysis of
Ref. [7], this completes the study of the Yangiain symmetry of the Wilson loop in
superspace which is thus established both at weak and at strong coupling. The com-
parison with the generators derived there shows that the local term depends on the
coupling constant in a non-trivial way.

There are several interesting directions in which the work described in this thesis
could be extended. A natural question concerns the relation between the master
symmetry and dual (super-)conformal symmetry, which has recently been studied
for minimal surfaces in AdS3 [10]. The latter symmetry can be seen to originate from
the self-T-duality of the (super-)string theory [11–13]. It would thus be interesting
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to work out the relation between the T-duality and the master symmetry. Moreover,
it could be illuminating to discuss the relation between the master symmetry and the
Bäcklund transformations considered in the literature on integrable models, cf. e.g.
Ref. [14].

Another interesting direction concerns the role of the master symmetry within the
symmetry structure of symmetric space models in the case of closed strings. In this
thesis, we have focused on minimal surfaces and only pointed out the differences
that should appear when one works with closed strings. In particular, rather than
the whole monodromy, only its eigenvalues are conserved charges in this case. It is
natural to expect that the master symmetry would similarly act as a raising operator
also on these charges, but this remains to be studied. It would also be interesting to
see whether the presence of the bonus symmetries leads to novel conserved charges
in this case as well.

We have described the master symmetry for symmetric space and principal chiral
models and have seen in Chap.6 that it can also be formulated for semisymmetric
space models. It is not clear, however, that a symmetry of this kind can be con-
structed in any integrable theory. To gain further insight into this question, it would
be interesting to study other integrable models such as the (chiral) Gross–Neveu or
the Landau–Lifshitz model. The latter is particularly interesting since it appears on
both sides of the AdS/CFT correspondence [15]. Other interesting cases include the
η-deformation [16] of the AdS5 × S5-superstring theory or the deformations of sim-
pler, bosonic theories. Thework of Ref. [17] on q-deformed symmetries for deformed
principal chiral models could be an interesting starting point for such an analysis.

In the application of the symmetries established here to Maldacena–Wilson loops
or Wilson loops in superspace, a pressing question is if and how these symmetries
can be applied in calculations. In order to make progress in this direction, it would be
important to understand the structure of the symmetry invariants in order to elaborate
how the symmetries constrain the functional form of the vacuum expectation value
of the operator.

While the question of the functional dependence on the contour data is certainly
difficult for generic, smooth contours, the constraints should be more transparent in
the case of light-like polygons, where the result only depends on the cusp points or the
conformal cross-ratios formed from them.With the analysis of the four-cusp solution,
we have taken a first step toward studying the master symmetry in the case of light-
like polygons. The analysis of the four-cusp case suggests that the master symmetry
indeed maps light-like polygons to such. However, since all light-like polygons with
four cusps are related to each other by a conformal transformation, the four-cusp
case is too simple to provide an interesting result. The relevant configuration would
be the case of six cusps, where there is a collection of conformally distinct polygons,
which can be described in terms of three conformal cross ratios. Unfortunately, since
a six-cusp solution is not known, we cannot directly calculate the master symmetry
transformation in order to see whether it acts on the cross-ratios in an interesting way.
However, the methods described in Ref. [18] or the mathematically related work of
Ref. [19] could help to make progress in this direction.
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Appendix

A.1 Spinor Conventions

In this appendix, we introduce our conventions for spinors in four, six and ten dimen-
sions and provide several technical identities which are helpful for the manipulations
of their indices. The spinor conventions in four dimensions are applied in the super-
space calculations of Chap. 7, the conventions for six and ten dimensions are mainly
needed in the discussion of the dimensional reduction from N = 1 supersymmetric
Yang–Mills theory in ten dimensions to N = 4 supersymmetric Yang–Mills theory
in four dimensions, which is also used in our discussion of the Maldacena–Wilson
loop. We note that the exposition provided here is based on the discussion given in
the author’s master’s thesis [1], which in turn employed the conventions of Refs. [2,
3]. However, the conventions have to be adapted from a mostly minus to a mostly
plus metric and they are thus provided here again.

A.1.1 Four-Dimensional Minkowski Space

We considerMinkowski space with the mostly plus metric η = diag(−1, 1, 1, 1) and
write Dirac spinors as

� =
(

�α

�̃ α̇

)
.

The spinor indices α and α̇ are raised and lowered according to the rules

λα = εαβλβ , λα = λβεβα , λ̄α̇ = εα̇β̇ λ̄β̇ , λ̄α̇ = λ̄β̇εβ̇α̇ , (A.1)

and the epsilon tensors are given by
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ε12 = ε12 = 1 , ε1̇2̇ = ε1̇2̇ = −1 ⇒ εαβεγβ = δα
γ , εα̇β̇εγ̇β̇ = δα̇

γ̇ . (A.2)

Moreover, we note the following conventions forsigma matrices:

(σμ)
α̇α = (12, �σ)

α̇α
, (�σμ)αα̇ = (12,−�σ)αα̇ ,

(σμν)
β

α = i
2 (�σμσν −�σνσμ)

β
α , (�σμν)

α̇
β̇

= i
2 (σμ�σν − σν�σμ)

α̇
β̇

.
(A.3)

These matrices satisfy the following identities:

�σμ
αγ̇ σν γ̇β +�σν

αγ̇ σμ γ̇β = −2 ημν δβ
α , σμ α̇α �σμ ββ̇ = −2 δα

β δα̇
β̇

,

σμ α̇γ �σν
γβ̇

+ σν α̇γ �σμ

γβ̇
= −2 ημν δα̇

β̇
, �σμ

αα̇ σν α̇α = −2 ημν ,
(A.4)

as well as the trace-identities

1
2 Tr(�σμ σν �σρ σκ) = ημν ηρκ + ηνρ ημκ − ημρ ηνκ − i εμνρκ ,

1
2 Tr(σμ �σν σρ �σκ) = ημν ηρκ + ηνρ ημκ − ημρ ηνκ + i εμνρκ .

(A.5)

From the identities given above, we can infer that the matrices

γμ =
(

0 �σμ

αβ̇

σμ α̇β 0

)
, γ5 = iγ0γ1γ2γ3 =

(
1 0
0 −1

)
, (A.6)

provide a representation of the Clifford algebra in four dimensions, i.e. they satisfy

{γμ, γν} = −2ημν1 . (A.7)

We moreover introduce the charge conjugation matrix C(1,3) = iγ2, which satisfies
the identities

C†
(1,3)C(1,3) = 1 , C†

(1,3)γ
μC(1,3) = − (γμ)

∗ . (A.8)

These identities ensure that the Majorana condition

�(c) = C(1,3)�
∗ = � (A.9)

is Lorentz-invariant. For the spinors given in Eq. (A.1), the Majorana condition
implies �̃α̇ = (�α)∗.We note that in four dimensions, theMajorana condition cannot
be enforced for left- or right-handed Weyl spinors, which take the form

(
�α

0

)
= PL� = 1

2

(
1 + γ5

)
� ,

(
0

�̃ α̇

)
= PR� = 1

2

(
1 − γ5

)
� .

In fact, the Weyl and Majorana conditions are known to be compatible only if the
dimension of the underlying spacetime satisfies d ≡ 2 (mod 8).
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We assign bispinors to four-vectors and two-tensors by

x α̇α = σμ α̇α xμ ,

B β
α = Bμν (σμν)

β
α ,

xαα̇ = �σμ
αα̇ xμ ,

B̄α̇
β̇

= Bμν (�σμν)
α̇
β̇

,
(A.10)

and note the identities

x α̇α xαβ̇ = −x2 δα̇
β̇

, xαα̇ x α̇β = −x2δβ
α , xαα̇ yα̇α = −2 xy . (A.11)

In the calculations in Chap. 7, we handle many fermionic variables with different
indices and it is convenient to assign canonical index positions so that we can omit
writing out the indices. The canonical index positions are given by:

�α
A , ��Aα̇ for variables conjugate to QA

α , �Qα̇A ,

ϑA
α , �ϑα̇A for variables conjugate to Sα

A , �SAα̇ .

Whenever a spinor index is raised or lowered into a different position, we spell out
the indices explicitly. In a matrix product, the indices of bispinors are positioned
accordingly. We provide the following examples for clarity:

tr
(�� �ϑ + ϑ�

) = ��Aα̇
�ϑα̇A + ϑA

α�α
A ,

[�̇θπθ̇�̇θπ]
A

α = �̇θAβ̇ πβ̇β θ̇β
B �̇θBγ̇ πγ̇α .

A.1.2 Six-Dimensional Euclidean Space

We consider Euclidean space R6 with the metric δI J . The gamma matrices for the
six-dimensional Euclidean space can be written as

γ̂ I =
(

0 � I AB

�� I
AB 0

)
, γ̂7 = i

6∏
I=1

γ̂ I =
(
14 0
0 −14

)
. (A.12)

Here, I runs from 1 to 6 while the upper or lower indices A, B take values in
{1, 2, 3, 4}. The sigma matrices are defined by

(�1 AB, . . . , �6 AB) = (η1 AB, η2 AB, η3 AB, i�η1 AB, i�η2 AB, i�η3 AB) , (A.13)

(��1
AB, . . . , ��6

AB) = (η1 AB, η2 AB, η3 AB,−i�η1 AB,−i�η2 AB,−i�η3 AB) , (A.14)

where ηi AB and�ηi AB denote the ’t Hooft symbols

ηi AB : = εi AB4 + δi Aδ4B − δi Bδ4A , �ηi AB := εi AB4 − δi Aδ4B + δi Bδ4A .

(A.15)

https://doi.org/10.1007/978-3-030-03605-8_7


196 Appendix

Here, εABCD denotes the four-dimensional epsilon tensor normalized by

ε1234 = ε1234 = 1 .

Note that the sigmamatrices are defined antisymmetric. The Clifford algebra relation
γ̂ I γ̂ J + γ̂ J γ̂ I = −2δ I J 1 follows from the relations

� I AB �� J
BC + � J AB �� I

BC = −2 δ I J δA
C ,

�� I
AB � J BC + �� J

AB � I BC = −2 δ I J δCA .
(A.16)

Proving the above involves a straightforward but lengthy calculation.
Similar to the four-dimensional case, we assign a (4 × 4)-matrix to a vector XI

by the prescription

X AB = 1√
2
� I AB X I , �XAB = 1√

2
�� I

AB X
I . (A.17)

These matrices are related by

�XAB = 1
2 εABCD XCD , X AB = 1

2 ε
ABCD �XCD ,

and for the contraction of the SU(4) indices, we note

X AB�YAB = �XABY
AB = 2X IY I . (A.18)

A.1.3 Ten-Dimensional Minkowski Space

We consider R(1,9) with the metric ηmn = diag(−1, 1, . . . , 1). For the discussion
of the dimensional reduction it is convenient to construct a representation of the
ten-dimensional Clifford algebra from the four- and six-dimensional Dirac matrices
introduced above. This can be achieved e.g. by defining

�m =
{
18 ⊗ γμ for M = μ ∈ {0, 1, 2, 3}
γ̂ I ⊗ γ5 for M = I + 3 ∈ {4, 5, 6, 7, 8, 9} , �11 = γ̂7 ⊗ γ5 .

Using the Clifford relations in four and six dimensions, one then shows that the
above matrices satisfy the ten-dimensional Clifford algebra {�m , �n} = −2 ηmn1.
Similarly, we canwrite the spinors inC32 
 C

8 ⊗ C
4 in the form of a tensors product

as

ξ =
(

ξA

ξA

)
⊗

(
ξα

ξ̃α̇

)
. (A.19)
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Note however, that this is not the most general form of an element of C32, as not
every element of a tensor product space can be written as the tensor product of two
vectors. To avoid writing linear combinations of vectors, we will write the spinors
in the following form:

ξ =
(
ξA
α , ξ̃A α̇ , ξAα , ξ̃α̇

A

)T
.

How to multiply the gamma matrices with these spinors can be read off from (A.19)
and from the position of the indices, see Ref. [1] for explicit formulas.

The ten-dimensional N = 1 supersymmetric Yang–Mills theory employs
Majorana–Weyl spinors in ten dimensions. A left-handed Weyl spinor satisfies the
condition

�11ξ =
(
ξA
α , −ξ̃A α̇ , −ξAα , ξ̃α̇

A

)T = ξ ,

and thus it has the form

ξ =
(
ξA
α , 0 , 0 , ξ̃α̇

A

)T
.

For the Majorana condition, we employ the charge conjugation matrix

C1, 9 =
(
0 14
14 0

)
⊗ C1, 3 . (A.20)

A left-handed Majorana-Weyl spinor then satisfies the condition

C1, 9 ξ∗ =
(
εα̇β̇ ξ̃

β̇
A , 0 , 0 , εαβ ξA

β

)T = ξ , (A.21)

which imposes the restrictions (ξ̃A α̇)∗ = ξA
α and (ξAα)∗ = ξ̃α̇

A. The 32 complex
degrees of freedom of a Dirac spinor in ten dimensions are hence reduced to 16 real
degrees of freedom for a Majorana-Weyl spinor in ten dimensions. The conjugate
spinor is as usual defined by �ξ = ξ†�0 and the relations needed for the dimensional
reduction can be obtained from the explicit expressions given above for the Dirac
matrices in four, six and ten dimensions. More details can be found in Refs. [1, 3].

A.2 The Fundamental Representation of u(2, 2|4)

In this appendix, we discuss the fundamental representation of the Lie superalgebra
u(2, 2|4). We introduce a specific set of generators and collect useful formulae for
the calculations of Chaps. 6 and 7.

https://doi.org/10.1007/978-3-030-03605-8_6
https://doi.org/10.1007/978-3-030-03605-8_7
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Following the conventions established in Ref. [4], we choose the following basis
elements for the Lie superalgebra u(2, 2|4):

⎛
⎝ 0 Pμ QA

α

Kμ 0 �SAα̇

Sα
A �Qα̇A RA

B

⎞
⎠ =

⎛
⎝ 0 i�σμ 2 Eα

A
iσμ 0 2 Eα̇A

−2 E A
α −2 E Aα̇ 4 E A

B − δA
B 14

⎞
⎠ . (A.22)

This equation is to be read as

Pμ =
⎛
⎝ 0 i�σμ 0
0 0 0
0 0 0

⎞
⎠ (A.23)

and similarly for the other generators. The notation E A
B denotes a matrix with entry

1 in the position (A, B) and all other entries vanishing. The remaining generators of
u(2, 2|4) are given by

Mμν = − i

2

⎛
⎝σμν 0 0

0 �σμν 0
0 0 0

⎞
⎠ , C = +1

2

(
14 0
0 14

)
, (A.24)

D = +1

2

⎛
⎝12 0 0

0 −12 0
0 0 0

⎞
⎠ , B = −1

2

(
0 0
0 14

)
. (A.25)

We note that the fermionic generators do not satisfy the reality constraint. They
are constructed in such a way that the linear combinations�α

AQA
α + ��Aα̇ Q̄α̇A and

ϑA
αSα

A + �ϑα̇A�SAα̇ are elements of u(2, 2|4), provided that

��Aα̇ = (
�α

A
)∗

, �ϑα̇A = (ϑA
α)

∗ , (A.26)

such that � and �� or ϑ and �ϑ form the components of a left- or right-handed ten-
dimensional Majorana–Weyl spinor. The R-symmetry generators RA

B do not satisfy
the reality condition as well, only appropriate linear combinations do. These are
found by constructing a representation of su(4), which we may e.g. obtain as in
Ref. [5] from the representation of the SO(5) Clifford algebra, which is given by

γ1 =
(

0 −iσ2

iσ2 0

)
, γ2 =

(
0 iσ1

−iσ1 0

)
, γ3 =

(
0 12
12 0

)
,

γ4 =
(

0 −iσ3

iσ3 0

)
, γ5 =

(
12 0
0 −12

)
.

(A.27)

These matrices satisfy the Clifford relation {γr , γs} = 2 δrs 14 and we employ them
to construct a set of matrices γ I J = −γ J I , which form a basis of su(4) 
 so(6),
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γrs = 1
4

[
γr , γs

]
,

γr6 = 1
4

[
γr , γ5

]
,

γr5 = i
2γ

r ,

γ56 = − i
2γ

5 ,
(A.28)

where r, s take values in {1 , . . . , 4}. For these matrices we note the commutation
relations

[
γ I J , γK L

] = δ I L γ J K + δ J K γ I L − δ I K γ J L − δ J L γ I K . (A.29)

The su(4) sub-algebra of the superconformal algebra is spanned by the matrices

� I J =
(
0 0
0 γ I J

)
, (A.30)

which are related to the generators RA
B by � I J = 1

4

(
γ I J

)
B

A RA
B . The use of the

generators RA
B is advantageous when calculating commutation relations.

We have picked the above generators in such a way that they satisfy the commu-
tation relations

[Ta, Tb] = f c
ba Tc = f c

ab Tc ,

where f c
ab denote the structure constants of the generators introduced in Sect. 2.1,

[ta, tb] = f c
ab tc . We collect the commutation relations here once more. The com-

mutators with the generators M and R only depend on the set of indices and their
position:

[
M β

α , Jγ

]
= 2i δβ

γ Jα − iδβ
α Jγ ,

[
M β

α , J γ
]

= −2i δγ
α J β + iδβ

α J γ , (A.31)

[ �M α̇
β̇
, J γ̇

]
= 2i δ

γ̇

β̇
J α̇ − iδα̇

β̇
J γ̇ ,

[ �M α̇
β̇
, Jγ̇

]
= −2i δα̇

γ̇ Jβ̇ + iδα̇
β̇
Jγ̇ , (A.32)

[
RA

B , JC
]

= 4 δCB J A − δA
B JC ,

[
RA

B , JC
]

= −4 δA
C JB + δA

B JC . (A.33)

The commutators with the dilatation D and hypercharge generator B are specified
by a weight �(Ta) or a hypercharge hyp(Ta),

[D, Ta] = �(Ta) Ta , [B, Ta] = hyp(Ta) Ta .

The non-vanishing weights or hypercharges of the generators are given by

�(P) = 1 ,

�(K ) = −1 ,

�(Q, �Q) = 1
2 ,

hyp(Q,�S) = 1
2 ,

�(S,�S) = − 1
2 ,

hyp(�Q, S) = − 1
2 ,

(A.34)

https://doi.org/10.1007/978-3-030-03605-8_2
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Moreover, we note the following commutation relations:

[
Kαα̇ , QA

β
]

= −2i δβ
α
�SAα̇ ,

[
Kαα̇ , �Qβ̇A

]
= +2i δ

β̇
α̇Sα

A ,[
P α̇α , Sβ

A
]

= +2i δα
β

�Qα̇A ,
[
P α̇α , �SAβ̇

]
= −2i δα̇

β̇
QA

α , (A.35){
QA

α , �Qα̇B
}

= −2i δB
A P

α̇α ,
{
Sα

A , �SBα̇

}
= −2i δA

B Kαα̇ .

The remaining non-vanishing commutators are given by

[
Pμ , Kν

]
= +2ημν D − 2Mμν ,{

QA
α , Sβ

B
}

= −2i δB
A M α

β − δα
β RB

A − 2 δB
A δα

β (D + C) ,{�Qα̇A , �SBβ̇

}
= −2i δA

B
�M α̇

β̇
− δα̇

β̇
RA

B + 2 δA
B δα̇

β̇
(D − C) .

(A.36)

The metric Gab = str(TaTb) on the algebra has the following components:

str(P α̇α Kββ̇) = −4 δα
β δα̇

β̇
,

str(QA
α Sβ

B) = −4 δB
A δα

β ,

str(�Qα̇A �SBβ̇) = 4 δA
B δα̇

β̇
,

str(D D) = 1 ,

str(M β
α , M ε

γ ) = −4 δβ
γ δε

α + 2 δβ
α δε

γ ,

str( �M α̇
β̇

�M γ̇
ε̇ ) = −4 δ

γ̇

β̇
δα̇
ε̇ + 2 δα̇

β̇
δ

γ̇
ε̇ ,

str(RA
B RC

D ) = −16 δA
D δCB + 4 δA

B δCD ,

str(B C) = 1 .

(A.37)

All other entries are vanishing. We note that the metric Gab satisfies the symme-
try property Gab = (−1)|a| Gba , where |a| = deg(Ta) denotes the Graßmann degree
of a homogeneous basis element, i.e. |a| = 0 or 1 for an even or odd generator,
respectively. Moreover, we note the identity

str
(
P (2)(RA

B )P (2)(RC
D )

) = str
(
RA

B P
(2)(RC

D )
)

= −4KBD K AC − 4δA
D δCB + 2δA

B δCD , (A.38)

for the projections of the generators RA
B .

Let us nowwork out the projections of the supermatrix generators onto the graded
components. For a general supermatrix

N =
(
m θ
η n

)

these projections are given explicitly in Ref. [5],
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N (0) = 1

2

(
m − Kmt K−1 0

0 n − Knt K−1

)
, N (2) = 1

2

(
m + Kmt K−1 0

0 n + Knt K−1

)
,

N (1) = 1

2

(
0 θ − i Kηt K−1

η + i Kθt K−1 0

)
, N (3) = 1

2

(
0 θ + i Kηt K−1

η − i Kθt K−1 0

)
.

Making use of these identities we find the bosonic subspaces to be given by

g(0) = span
{
Mμν,

1
2

(
Pμ − Kμ

)
, �rs, �r6

}
,

g(2) = span
{
C, D, 1

2

(
Pμ + Kμ

)
, �r5, �56

}
.

(A.39)

Here, we have used the property

K
(
γa

)t = γaK

to find the graded components of the su(4)-subalgebra and we note that the matrices
�rs and �r6 form a representation of so(5).

For the fermionic generators we introduce the notation A(1)±(3) = A(1) ± A(3) and
note that (Q, S, �Q,�S)(1)+(3) = (Q, S, �Q,�S) and

(
Q α

A

)(1)−(3) = i KAB εαβ S B
β ,(

S A
α

)(1)−(3) = i K AB Q β
B εβα ,

(�Qα̇A
)(1)−(3) = −i K AB �SBβ̇ εβ̇α̇ ,(�SAα̇

)(1)−(3) = −i KAB εα̇β̇
�Qβ̇B .

(A.40)

A.3 Matrix-Valued Differential Forms

We provide a brief overview for the use of g-valued differential forms and derive a
number of helpful formulas for the calculations with these forms. Since the world-
sheet is two-dimensional, we are only considering zero-forms (functions), one-forms
and two-forms.

Two such forms can be combined by using the wedge product ∧, which is an
anti-symmetrized tensor product of differentials. However, the anti-symmetry of the
wedge product on the basis one-forms,

dσi ∧ dσ j = −dσ j ∧ dσi ,

does not carry over to general g-valued one-forms, since the coefficients ωi and ρi
do not commute in general, such that we get the relation

ω ∧ ρ + ρ ∧ ω = [
ωi , ρ j

]
dσi ∧ dσ j . (A.41)

Applying the differential d maps a k-form to a (k + 1)-form and hence the differential
of a two-form vanishes in our case. For a function f or a one-form ω taking values
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in g, we note

d f = ∂i f dσ
i , dω = ∂ j ωi dσ

j ∧ dσi .

In calculating the differential of a product, the order needs to be respected as well.
For two functions L and R taking values in G, we have

d (L ωR) = dL ∧ ωR + L dωR − L ω ∧ dR ,

and in particular, for conjugations with g we find using dg−1 = −g−1dg g−1 and
U = g−1dg

d(gωg−1) = g (dω +U ∧ ω + ω ∧U ) g−1. (A.42)

A special situation occurs when the trace allows for cyclic shifts, but the order of the
differential forms has to be respected as well. For this situation, we find the identity

tr ([ω, X ] ∧ ρ) = tr
([

ρ j ,ωi
]
X

)
dσi ∧ dσ j = − tr ((ω ∧ ρ + ρ ∧ ω) X) , (A.43)

where X denotes a function taking values in g.
In the index-free notation of differential forms, the worldsheet metric is incorpo-

rated in the Hodge star operator, which maps a k-form to a (2 − k)-form, since we
are working on the two-dimensional worldsheet. We introduce the Hodge star oper-
ator for a general signature of the worldsheet such that the reader can infer how our
discussion of symmetric space models can be adapted to a Minkowskian worldsheet.
The Hodge star operator acts on a one-form as

∗ dσi = √|h| hi j ε jk dσk . (A.44)

Here, we fix the convention ετσ = ε12 = 1 for the Levi-Civita symbol and denoted
h = det(hi j ). For zero- and two-forms, we note

∗1 = √|h| (dτ ∧ dσ) , ∗(dτ ∧ dσ) =
√|h|
h

. (A.45)

Applying the Hodge star operator twice produces a sign depending on the rank of
the form and the signature of the worldsheet. For a general k-form r , we have

∗ ∗ r = (−1)k(2−k) sign(h) r . (A.46)

This is easy to see for zero- or two-forms and follows for one-forms using the identity

εik hkl ε
l j = −h hi j
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for theworldsheetmetric. Formoving theHodge star operator past thewedgeproduct,
we note the identity

ω ∧ ∗ρ = − ∗ ω ∧ ρ , (A.47)

where ω and ρ are two general one-forms. The notation using differential forms and
the Hodge star operator is related to index notation by

ω ∧ ∗ρ = (dτ ∧ dσ)
√|h| hi jωi ρ j , d ∗ ω = (dτ ∧ dσ) ∂i

(√|h|hi jω j
)
.

An important aspect in our discussion of symmetric space models is the presence of
flat connections, i.e. one-forms ω satisfying

dω + ω ∧ ω = 0 . (A.48)

The flatness of ω allows us to solve the differential equation

d f = f ω , (A.49)

since we have

0 = d2 f = d( f ω) = f (dω + ω ∧ ω) = 0 . (A.50)

The Poincaré lemma guarantees that a unique solution exists once an initial condition
for f is specified. Here, we apply the lemma on the worldsheet �, where we do not
identify points related by the periodic boundary conditions. The lemma can then be
applied since the worldsheet is star-shaped. With a solution to Eq. (A.49) given, we
consider gauge transformation f �→ f h. The flat connection associated to f then
transforms as

ω �→ ω′ = ( f h)−1d( f h) = h−1ωh + h−1dh (A.51)

The transformed connection is flat by construction which can easily be checked
by direct calculation: With r = dh h−1, we have dr − r ∧ r = 0 and hence, using
ω′ = h−1(ω + r)h,

dω′ + ω′ ∧ ω′ = h−1(dω + dr − r ∧ (ω + r)

− (ω + r) ∧ r + (ω + r) ∧ (ω + r))h = 0 .

The flatness of the transformed connection does not depend on whether we are actu-
ally considering a gauge transformation, i.e. whether h ∈ H, and the transformation
(A.51) is often referred to as a gauge transformation of the connection ω also in this
case.
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The differential Eq. (A.49) has a unique solution for any connection if we restrict
to a curve γ(s) = (τ (s),σ(s)). Along the curve, we then have the component

ωs = ωτ
dτ

ds
+ ωσ

dσ

ds
, (A.52)

and we impose the ordinary differential equation

∂s f (γ(s)) = f (γ(s))ωs(γ(s)) , (A.53)

which has a unique solution given some initial value f (γ(s0)). In the case of a
flat connection, the existence of a solution to Eq. (A.49) implies that the solution
to the above equation becomes path-independent, which is not the case for generic
connections. We can obtain a formal solution by integrating Eq. (A.53) to get the
integral equation

f (γ(s)) = f (γ(s0)) +
s∫

s0

ds1 f (γ(s1))ωs(γ(s1)) . (A.54)

Ifwe read the above equation as a recursion for f (γ(s)), we obtain the formal solution

f (γ(s)) = f (γ(s0)) · −→
Pexp

(∫ s

s0

ds1 ωs(γ(s1))

)
. (A.55)

The path-ordered exponential above is obtained from expanding the exponential and
ordering the integrals by putting higher values of s to the right, whichwemay express
formally as

−→
P [ωs(s1)ωs(s2)] =

{
ωs(s1)ωs(s2) if s1 < s2 ,

ωs(s2)ωs(s1) if s2 < s1 .
(A.56)

It is now evident from Eq. (A.51) that the path-ordered exponential over the trans-
formed connection is related to the one over the original connection by

−→
Pexp

(∫ s1

s0

ds ωs(γ(s))

)
= h(γ(s0))

−1−→Pexp
(∫ s1

s0

ds ω′
s(γ(s))

)
h(γ(s1)) .

(A.57)

This canbe concluded from the fact that both sides of the equality solve the differential
Eq. (A.53) for ω′ and reduce to 1 at s1 = s0.
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A.4 Transformation of the Local Term

We prove that the local term

J(1)a, lo = − λ

4π2

L∫
0

dσ ξμ
a (x)

(
ẋμ ẍ

2 + ...
x μ

)
(A.58)

of the bosonic Yangian symmetry generators derived in Sect. 4.4 indeed transforms
as

[
J(0)a , J(1)b, lo

]
= f c

ab J(1)c, lo . (A.59)

Here, the coefficients ξμ
a (x) are the conformalKillingvectors introduced inEq. (4.41),

for which we found the relations

ξν
a∂ν ξ

μ
b − ξν

b∂ν ξμ
a = fabc ξμ

c , ∂μξν
a + ∂νξμ

a = 1
2

(
∂ρ ξρ

a

)
ημν . (A.60)

The latter relation is known as the conformal Killing equation and for d > 2, we
may apply it to derive the additional relations

1
4

(
ημλ ∂ν + ηνλ ∂μ − ημν ∂λ

) (
∂κ ξκ

a

) = ∂μ∂ν ξλ
a , ∂μ∂ν∂λ ξκ

a = 0 . (A.61)

Moreover, we have fixed the parametrization in Eq. (A.58) to satisfy ẋ2 = 1, which
implies that ẋ · ẍ = 0. As before, the use of such a parametrization is indicated
by stating the boundaries 0 and L of the integration domain. In order to derive
the transformation behaviour (A.59), we need to rewrite the local term (A.58) as a
reparametrization invariant curve integral, since the variations typically violate this
constraint.

It is easy to see that the expression given in (A.58) is not reparametrization invari-
ant, since the second and third derivatives transform in the wrong way, for example
we have

∂2
σx

μ(σ̃(σ)) = σ̃′(σ)ẍμ(σ̃(σ)) + σ̃′′(σ)ẋμ(σ̃(σ)) . (A.62)

Here, the double derivative of the reparametrization function σ̃(σ) is not cancelled
by the transformation of the integration measure and hence the above term does not
lead to a reparametrization invariant integral. In order to address this problem, we
divide derivatives of xμ(σ) by |ẋ | before acting with the next derivative. In this way,
higher derivatives of the reparametrization function do not appear. Based on this
idea, we find the following expression for the local term (A.58),

https://doi.org/10.1007/978-3-030-03605-8_4
https://doi.org/10.1007/978-3-030-03605-8_4
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J(1)a, lo = − λ

4π2

∫
dσ ξμ

a (x)

[
ẋμ

(
1

|ẋ |∂σ

(
ẋμ

|ẋ |
))2

+ ∂σ

(
1

|ẋ |∂σ

(
ẋμ

|ẋ |
))]

. (A.63)

It is a simple exercise to check that the above expression is reparametrization invariant
and reproduces (A.58) for an arc-length parametrization. We can thus compute the
variation of J(1)b, lo,

δJ(1)b, lo = − λ

4π2

L∫
0

dσ
{ (

∂ρ ξ
μ
b

) (
ẋμ ẍ

2 + ...
x μ

) − ∂σ

[
ξ

μ
b

(
ημρ ẍ

2 − 4 ẋμ ẋρ ẍ
2
)]

+ 2 ∂2
σ

(
ξ

μ
b ẋμ ẍρ

) − ∂σ

[(
∂σ ξ

μ
b

)
ẍμ ẋρ + (

∂2
σ ξ

μ
b

) (
ημρ − ẋμ ẋρ

)] }
δxρ(s) .

(A.64)

Note that we have reverted back to an arc-length parametrization after calculating
the variation. Using the above result, one finds

[
J(0)a , J(1)b, lo

]
=

L∫
0

dσ ξ
ρ
a (x)

δJ(1)b, lo

δxρ(σ)

= − λ

4π2

L∫
0

dσ
{
ξ
ρ
a

(
∂ρ ξ

μ
b

) (
ẋμ ẍ2 + ...

x μ

)
+ (

∂σ ξ
ρ
a
)
ξρb ẍ

2 +
(
∂3σ ξ

ρ
a

)
ξρb (A.65)

+ (
∂σ ξ

ρ
a
) [ − 4 ξ

μ
b ẋμ ẋρ ẍ

2 − 2 ∂σ
(
ξ
μ
b ẋμ ẍρ

) + (
∂σ ξ

μ
b

)
ẍμ ẋρ −

(
∂2σ ξ

μ
b

)
ẋμ ẋρ

]}
.

Due to the use of an arc-length parametrization and the identities (A.61), one finds
that

∂3
σ ξρ

a = (
∂λ ξρ

a

) ...
x λ + 3 ∂σ

(
∂λ ξρ

a

)
ẍλ

= − (
∂ρ ξλ

a

) ...
x λ + 1

2

(
∂κ ξκ

a

) ...
x ρ + 3 ∂σ

(
∂λ ξρ

a

)
ẍλ .

We can thus rewrite the first line of (A.66) as

L∫
0

dσ
(
ξρ
a∂ρ ξ

μ
b − ξ

ρ
b∂ρ ξμ

a

) (
ẋμ ẍ

2 + ...
x μ

)

+ 1
2 ξ

ρ
b

[ (
∂κ ξκ

a

) (
ẋρ ẍ

2 + ...
x ρ

) + 6 ∂σ

(
∂λ ξρ

a

)
ẍλ

]
.

For the commutator (A.59), we thus find

[
J(0)a , J(1)b, lo

]
= f c

ab J(1)c, lo − λ

4π2
Rab (A.66)
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and still need to show that

Rab =
L∫

0

dσ
{ (

∂σ ξρ
a

)[ − 4 ξ
μ
b ẋμ ẋρ ẍ

2 − 2 ∂σ

(
ξ
μ
b ẋμ ẍρ

) + (
∂σ ξ

μ
b

)
ẍμ ẋρ −

(
∂2

σ ξ
μ
b

)
ẋμ ẋρ

]

+ 1
2 ξ

μ
b

[ (
∂κ ξκ

a

) (
ẋμ ẍ2 + ...

x μ

)
+ 6 ∂σ

(
∂λ ξμa

)
ẍλ

]} = 0 . (A.67)

Webegin by rewriting the terms in the first line.Using the conformalKilling equation,
we find e.g. for the first term

L∫
0

dσ
(
∂σ ξρ

a

) (
ξ
μ
b ẋμ ẋρ ẍ

2) =
L∫

0

dσ
(
∂λ ξρ

a

)
ẋλ ẋρ ξ

μ
b ẋμ ẍ

2 = 1

4

L∫
0

dσ
(
∂κ ξκ

a

)
ξ
μ
b ẋμ ẍ2 .

We can treat two more terms analogously to find

L∫
0

dσ
(
∂σ ξρ

a

) ((
∂2

σ ξ
μ
b

)
ẋμ ẋρ

) = 1

4

L∫
0

dσ
(
∂κ ξκ

a

) (
∂2

σ ξ
μ
b

)
ẋμ ,

L∫
0

dσ
(
∂σ ξρ

a

) (
∂σ ξ

μ
b

)
ẍμ ẋρ = 1

4

L∫
0

dσ
(
∂κ ξκ

a

) (
∂σ ξ

μ
b

)
ẍμ .

The remaining term in the first line ismore complicated to rearrange.After integrating
by parts, we have

L∫
0

dσ
(
∂2

σ ξρ
a

)
ẍρ ξ

μ
b ẋμ =

L∫
0

dσ
[(

∂λξρ
a

)
ẍλ ẍρ + (

∂κ∂λξρ
a

)
ẋκ ẋλ ẍρ

]
ξ

μ
b ẋμ

= 1

4

L∫
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dσ
[(

∂κ ξκ
a

)
ẍ2 − (

∂ρ∂κξ
κ
a

)
ẍρ

]
ξ

μ
b ẋμ .

We then note that, since ∂σ

(
∂ρ∂κξ

κ
a

) = 0, we can integrate by parts again to obtain

L∫
0

dσ
(
∂2

σ ξρ
a

)
ẍρ ξ

μ
b ẋμ = 1

4

L∫
0

dσ
(
∂κ ξκ

a

) (
ξ
μ
b ẋμ ẍ

2 − ∂2
σ

(
ξ
μ
b ẋμ

))
.

We have thus rewritten the first line of Eq. (A.67) as

−1

4

L∫
0

dσ
(
∂κ ξκ

a

) (
2 ξ

μ
b

(
ẋμ ẍ

2 + ...
x μ

) + 3 ∂σ

((
∂σξ

μ
b

)
ẋμ

))
. (A.68)
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We then note that using the same reasoning that led us to Eq. (A.68), we can rearrange

L∫
0

dσ ∂σ

(
∂λ ξμ

a

)
ξμb ẍλ = 1

4

L∫
0

dσ
(
∂κ ξκ

a

)
∂σ

((
∂σξ

μ
b

)
ẋμ

)
. (A.69)

Inserting the last two results into (A.67), one indeed finds Rab = 0 which concludes
the proof.

A.5 Densities of the Yangian Generators

A.5.1 Level Zero

In this appendix we provide the differential generators ja(σ) obtained from
Eq. (7.114),

ja(σ) (Aren(γ)) = 1
2 str

(
jτ (0)(σ) Ta

)
, (A.70)

which we write out explicitly in the form pμ(σ) (Aren(γ)) = 1
2 str

(
jτ (0)(σ) Pμ

)
and

similarly for all other generators. We use the short-hand notation

∂μ = δ

δxμ(σ)
, ∂A

α = δ

δθα
A(σ)

, �∂α̇A = δ

δ�θAα̇(σ)
, ∂ I = δ

δnI (σ)
, (A.71)

and note the generators

pμ = ∂μ ,

qA
α = −∂A

α + i�θAα̇ ∂α̇α ,

m β
α = n β

α − 1
2 δβ

α n γ
γ ,

n β
α = −2i θα

A ∂A
β + i xαα̇ ∂α̇β ,

b = 1
2

(
θ ∂θ − �θ �∂θ

)
,

d = 1
2

(
θ ∂θ + �θ �∂θ

) + x · ∂x ,

�q α̇A = −�∂α̇A + iθα
A ∂α̇α ,

�mα̇
β̇

= �nα̇
β̇

− 1
2δ

α̇
β̇
�nγ̇

γ̇ ,

�nα̇
β̇

= 2i �θAβ̇
�∂Aα̇ − i xαβ̇ ∂α̇α ,

c = 0 .

(A.72)

The remaining generators are given by

r AB = 4
((

γ I J
)
B
A nI∂ J + �θBα̇

�∂Aα̇ − θα
A ∂B

α
) − δA

B

(�θ �∂θ − θ ∂θ

)
,

s Aα = i x−
αα̇

�∂α̇A + x+
αα̇ θb

A ∂α̇β − 4 θα
B θβ

A ∂B
β + 4θα

B
(
γ I J

)
B
A nI∂ J ,

�sAα̇ = −i x+
αα̇ ∂A

α − x−
αα̇

�θAβ̇ ∂β̇α − 4�θAβ̇
�θBα̇

�∂β̇B + 4
(
γ I J

)
A
B �θBα̇ n

I∂ J ,

kαα̇ = i x+
αβ̇

�nβ̇
α̇ − i x−

βα̇ nα
β − x+

αβ̇
x−

βα̇ ∂β̇β − 8i
(
θ γ I J �θ)

αα̇
nI∂ J (A.73)
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Here, we introduced the chiral and anti-chiral coordinates

x+
αα̇ = xαα̇ + 2i θα

A �θAα̇ , x−
αα̇ = xαα̇ − 2i θα

A �θAα̇ . (A.74)

These generators satisfy the commutation relations given for the superconformal
algebra in Sect. 2.1, i.e. we have

[
ja(σ), jb(σ

′)
}

= f c
ab δ(σ − σ′) jc(σ) . (A.75)

As pointed out before, the structure constants above are related to the structure
constants f c

ab of the supermatrix generators introduced in Appendix by the relation

f c
ab = f c

ba = −(−1)|a||b| f c
ab . (A.76)

For the discussion of the level-1 Yangian generators, we also need the components of
themetric on u(2, 2|4) for the above generators. In order to obtain these, we construct
a basis of matrix generators, which satisfy the above commutation relations, by
manipulating the basis introduced in Appendix. Concretely, we have the assignment

R(ja) = Ta =
{
Ta if � ∈ {−1,− 1

2 , 1
}

,

−Ta if � ∈ {
0, 1

2

}
.

(A.77)

In order to see that the basis thus introduced has the structure constants

[Ta,Tb] = f c
ab Tc , (A.78)

note that the weights are additive in a commutator and that the fermionic generators
have half-integer weights, whereas the bosonic generators have integer weights. It
is then easy to see that all except the odd-odd commutators change their sign, as
Eq. (A.76) demands. Noting moreover that the metric of two generators is only non-
vanishing if the weights add up to zero,

Gab �= 0 ⇒ �a + �b = 0 , (A.79)

we observe moreover that the metric Gab = str (Ta Tb) is given by

Gab = Gba = (−1)|a| Gab . (A.80)

A.5.2 Level 1

We provide the parts of the level-1 densities defined in Eq. (7.140),

https://doi.org/10.1007/978-3-030-03605-8_2
https://doi.org/10.1007/978-3-030-03605-8_7
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j(1) ′
a T a =

{
eX ·P+�Q+���Q

(πμ

τ 2
Kμ − πμπ̇νMμν + 2i tr

(�̇θπθ̇
)
C

)
e−X ·P−�Q−���Q

}
(0)

.

A direct calculation gives

(
p(1) ′)μ = 0 ,

(
q(1) ′)

A
α = 2i ��(2) Aα̇ πα̇α ,

(�q(1) ′)α̇A = 2i πα̇αθ(2)α
A . (A.81)

For the remaining generators, we have

d(1) ′ = i tr
(��(2)πθ − �θπ�(2)

)
,

b(1) ′ = 2i tr
(��(2)πθ + �θπ�(2) + �̇θπθ̇

)
,

(
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)
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(
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(
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(
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B tr
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α
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(
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π θ + 2 x− π�(2)

)
α
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Aα̇
= − (

4�θ π
(
π̇ + 2i θ��(2)

) + 2 ��(2) π x+)
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,(
k(1) ′)
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(A.82)
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